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INTRODUCTION

Two phase gas-liquid flow and its associated interfaces exist in
a wide variety of situations of importance to the Navy and this has
prompted the study of the basic flow mechanics which underlie this
complex process. The existence of wind-wave interactions over large
bodies of water have long been recognized as a special case of two
phase flow where the presence of the deformable interface plays a
commplex role in the generation of waves due to the action of the
wind. Less well recognized, but of great importance, are situations of
two phase flow which are found in componenet of power systems
such as condensedrs, boilers refrigeration loops and cryogen lines.
Here the characteristics of two phase flow are critical to the reliable
design and safe operation of such systems. A basic understanding of
gas-liquid flows is also central to the design of safety systems for
nuclear reactors. In fact some of the earliest research contributions
to the mechanics of two phase flow was motivated by the necd to
design such emergency safety systems for the early versions of the
Navy nuclear submarine fleet.

During simultaneous flow of gas and liquid in a conduit the
phases distribute in a variety of patterns. These include gas bubbleds
distributed in the liquid, alternating flows of gas and liquid plugs and
annular flow where the two phases are separated with the liquid
flowing predominately along the wall and the gas flowing in the core.
It is the latter configuration which has been the subject of this study.
In this configuration the interface is covered by a complex chaotic
system of waves of considerable ampolitude compared to the thin
film over which it rides. Furthermore the high speed gas causes
detachment of the some of the liquid from the waves and this forms
an entrained droplet phase which travels with the gas. IN this
research program this complec problem has been attacked from a
number of directions.

A. Phase plane and bifurcation analysis of the complex wavy
structure of the interface. These rcsults appeared in two published
papers attached:

* Phase plane and bifurcalion analysis of thin wavy films
under shear. AIChE J 35, 177-186 (1989)




+ Methods of deterministic chaos applied to flow of thin
wavy films. AIChE J 37 481-489 (1991)

B. Experimental and numerical investigations of the mechanics
of wavy flow including the solution of the momentum equation for
the velocity field under the free wavy surface and the interactions
between the waves and this field. These appear in two publications
which are attached.

Insights into the hydrodynamics of free falling wavy
film. AICHE J. 35_187-195 (1989)

» Numerical investigation of large wave interactions on
free falling films. Int. J. Mult. Flows 15, 357-370 (1989)

C. Studies of mass transfer and the role of the waves on the
enhancement of the transfer process. These work is presented in
two publications attached.

* A numerical study of mass transfer in free falling wavy
film. AIChE J 36, 1379-1390 (1990)

+An experimental study of mass transfer from a wall into
a wavy falling film. Chem Eng Sci 47 4323-4331 (1992)

Two studies initiated and carried out under this study and now
nearing completion are

« Studies of turbulent gas flow over a wavy interface.

* Entrainment from a wavy interface and drop dynamics
of the entrained phase.

PhD theses for each of these areas are now essentially complete.
Papers have been accepted for preseatation on both subjects at the
next annual meeting of the American Institute of Chemical Engineers.
Copies of the manuscripts will be forwarded when ready. It is
estimated that they will be available about the end of the year.
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Methods of Deterministic Chaos Applied to the
Flow of Thin Wavy Films

C. E. Lacy, M. Sheintuch, and A, E. Dukler
Dept. of Chemical Engincering, University of Houston, Houston, TN 77204

The structure of thin, wavy falling films wus studied 1o evaluate whether (he
random-appearing wave structure is g resull of deterministic chavs or a purely
stochastic process. The lime-varying film thickness was obtained ar different spatial
locations near the point of wave inception for flow rates in the range of Re = 3-10.
Under all conditions the wave structure was aperiodic in nature and displaved none
of the known transitions to chaos. Howeuver, the power spectra followed an expo-
nential decay law at high frequencies that is characteristic of chaotic systems. The
estimated attractor dimension, used to characterize the complexity of ¢ chaotic
system, was much higher than those of known model chaotic systems. It is dem-
onstrated that these high values could be explained due to small levels of noise
present in experimental situations. Since experimental daia are seldom noise free,
a basic limitation in applying these methods to experimental measurements is dem-

onstrated.

introduction

The hydrodynamic behavior of thin wavy falling films has
been a subject of intensive investigation for about forty years.
These films are widely employed in equipment for heat trans-
fer, mass transfer, and chemical reacting systems. In addition
to the practical need for understanding the mechanics of this
type of flow, there are challenging theoretical problems em-
bedded in the task of modeling these wavy films. This com-
bination has given rise to an extensive litcrature on this subject.

The carliest work was based on the use of integral equations
of the boundary layer type to solve the equations of motion
(Kapitza and Kapitza, 1949; Shkadov, 1967), These approaches
were based on the assumed existence of a periodic interface
and produced first-order estimates for wavelength and velocity.
A long series of papers including work by Benney (1966), Lin
(1969), and Whitaker (1964), used lincar stability analysis to
find the wavelength and velocity of the fastest growing wave,
again assuming a periodic perturbation. This initial periodic
disturbance is thought to evolve into the more complex
waveforms observed in experiments as a result of the nonlinear
nature of the equations. Noalinear stability analyses have also
been pursued (Pumir, 1983). Recent work on the nonlinear
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nature of wavy films (Chang, 1987; Sheintuch and Dukler,
1989) searched for infinitely long periodic waves by finding
the conditions for sxistence of the homoclinic orbit.

But even a cursory examination of measured wave traces
raises some doubts as to the usefulness of the idea of a small-
amplitude periodic wave as the model foc the initial phase of
the wave motion or of isolated waves as a model for the de-
veloped ones. Figure 1d shows a wave trace for a failing liquid
film of water-glycerine solution taken with a conductivity probe
mounted in a vertical pipe of 50.8 mm dia. as described below.
The flow rate corresponds to a Reynolds number of 3.9. The
probe was located 0.346 m below a carefully leveled, sharp-
edged averflow weir that served as the feed device. The film
thickness data are shown after low-pass digital filtering at 25
Hz to remove noise. At this location the wave amplitude is
less than 0.25% of the mean {ilm thickness, At all positions
closer to the feed the waves were so small that they could
barely be detected even with the special circuitry used for this
purpose. Note that while the period between successive waves
is quite regular, the amplitude is very random. Kapitza and
Kapitza (1949) in their classical study of waves on falting films
found it necessary to pulse the fecd to produce periodic waves.
n the absence of pulsing they too reporied that the waves were
random in appearance. Thus one must question whether the
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Ganreosnn, Josomdependent o 0T os been shown by Tahens
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CEONS) wis weed 1o estuiate thie dunension since at appears e
be more aecuate (Rostehich and Swaaney, 19873 tun the imone
widely used correlation dimienvion miethod o1 Grassbereet aad
Proccaccur, (1983) Tor svstems displaying igher diensions,
Cansider a set of N points, constructed as i By, 1, thar e
on the reconstructed attractor. Arbitrarily select a pomnt x on
this asiractor as a reterence point. Now choose at random a
subset of & points denoted by 3, (i=1,2,....& and kK <M) from
the original sct of N points and consider the distance from x
1o cach point y,. Define 6 as the single minimum of these
distances. that is, the distance to the nearest neighbor.
é=minlx—yA )
To obtain a statistically useful value of the minimum distance,
this calculation is repeated over many randomly chosen ref-
erence points and an average obtained, (8). The process is
then repeated for a sequence of & values up to k=N~1 for
each x. The number of nearest neighbors contained in a D-
dimensional hypersphere of radius & around a given point
should vary as & if the attractor is d-dimensional. Thus it is
argued that

8y ~ kv €]
Hence
-1
log(8) ~-—a—log k “

The negative, inverse slope of a log (&) vs. log & plot is the
fractal dimension.
All experimental measurements of forced flow systems in-
‘lude electronic noise as well as noise due to random vibrations
reaching the system through piping or pumps. Small-amplitude
noise can be expected to distort distances between closest near-
st neighbors and their reference point. To partly alleviate this
rror Kostelich and Swinney (1987) suggest that § be calculated
for the tenth or hundredth nearest neighbor. For each choice
¢ D and nearest neighbor, n1, an estimate of d can be calculated
suming k is kept sufficiently larger than n. The value of d
15 said to converge to the attractor dimension when d becomes
independent of D and n as both are increased. Additional
pects of the noise problem are discussed later in this paper.
The computed value of & has been shown to depend on the
value of the delay time, 7, used to construct the D-dimensional
vectors in Eq. 1. H ris too small, then each x(f) approaches
t+7), and the reconstructed attractor will be a 45° planc in
i : phase space, For targe values of 7, the attractor dimension
tends to approach the embedding dimension, D, of the recon-
¢ -ucted phase space due to the stretching and folding nature
¢ chaotic systems (Frascr and Swinney, 1986}.
f'o obtain the optimal delay, a series of two-dimensional
reconstructions of {x(r), x(#+ 1)} are generated with increas-
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Figure 3. Low Re tlow system.

ing values of 7. The optimal reconstruction occurs for the
smallest value of 7 for which x(f) and x(r+7) can first be
considered independent. The criterion for choosing this value
of 7 is the first minimum in the index of mutual information,
1, as described by Fraser and Swinney (1986). This index is a
measure of the degree of predictability of a measurement
Xx(t+7) given a measurement x(¢).

Experimental Equipment

Figure 3 is a diagram of the experimental flow loop used
for studies of free-falling liquid films at low Re(Re=4Q/v
= 3-10). Where Qs the volumetric flow rate per unit perimeter
and v is the kinematic viscosity. The measurement section
consisted of a 50.8 mm dia. tube 0.47 m fong. The liquid feed
tank contained a sharp-edged circular weir over which the
liquid flowed from the reservoir into the pipe. The distance
from the sharp edge to the bottom of the flange was 86 mm.
This was followed by a development section having one of
three lengths: 86, 138, or 284 mm. Wave motion is not observed
immediacely after the film is formed at the overflow. The
development section provided the length needed at different
flow rates to cause the waves to first appear in the measuring
section where film thickness probes were located.

Instantaneous film thickness data were abtained using closely
spaced parallel wires 10 make resistivity measurements, which
are related to film thickness by calibration. Detaiis oi this
method including the electronic circuit used appear in the thesis
by Zabaras (1985). For these low Re measurements, an array
of scven probes was spaced in the direction of flow with dis-
tances from the feed point listed in Tablc 1. A glycerine-water-
NaOH solution having a kinematic viscosity of 5.6x (0 °
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Figure 5. Experimental film thickness traces at Re = 7.5.

Distance below overflow weir;
2.0.21 m: 5. 0.26 m; ¢c. 0.4l m; d. 0.61 m

of all the waves returning to a single thickness and the variation
of wave amplitude being reflected in differences in the peak
value. Figure 7c¢ shows this structure in which the lefthand
corner resembles motion in the vicinity of a saddle point. With
further distance in the axial direction the wave periods, which
heretofore had been regular, now become chaotic, as shown
in the time trace, the spectrum, and ia Figure 7d.

When two spectral peaks of about equal power exist at wave
inception (Re=5.6), the approach to a more uniform wave
amplitude is not observed and the waves progress more rapidly
10 the condition of chaotic wave periods.

The power spectra provide a suggestion that the underlving
process may be a manifestation of deterministic chaos. Sigeti
and Horsthemke (1987) have shown that for a jth-order sto-
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chastic differential equation the spectral p0\\cr at high fre-
quencies follows a power law decay, S=¢f 7. Deterministic
equations are, on the other hand, infinitely dx((crenuablc and
the spectrum rmust decay exponentially at hign frequencies. All
spectra observed were characterized by exponential decay.

Atractor Dimension, For each daia set listed in Table 1,
the nearest-neighbor algorithm for the computation of the
attractor dimension was applied using the following parame-
ters:

Total points, N = 100,000
Embedding dimension, D = 8-20

Nearest neighbors, n = 100-600
Subsets of NV points, & = 15,000-100,000

These parameters resulted in processing 2,000-4,000 waves
with each wave represented by 30-40 discrete points.

Figure 8 illustrates the method of Badii and Pohti (1985)
when applied to the time series data from probe S at Re=7.5.
Figure 8a is a plot of log, (&) vs. log. & for one D and # pair.
An estimate of the attractor dimension, d, is obtained from
the slope as given by Eq. 4. The results of repeating this process
for each combination of D and n appear in Figure 8b. Here
the dimension has converged with increasing D and n, indi-
cating an attractor dimension of about 3.5. There are instances
where convergence was not observed with increasing D, as
illustrated in Figure 9, although convergence with increasing
n was always observed. However, this system docs not rep-
resent purely stochastic noise, since under that condition onc
would expect d to be close 10 D. This behavior scems to be
related 1o the presence of noisc in the signal and presents a
basic problem in processing and analyzing data from real sys-
tems as compared to analyzing data from mathematical modcls.

Figure 10 shows the trends in complexity of the time traces
as position and flow rates are changed. Estimated dimensions
appear here that have been computed for D = 20, N = 100,000,
n =600 using .000 reference points. [n somie cases defintive

Vol. 37, No. 4 483
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Attempts to diminish the effects of noise by low-pass filtering
had negligible impact on the calculated dimension of the at-
tractor. Methods for eliminating noisec have recently been ad-
vanced by Kostelich and Yorke (1988), but they appear
applicable only when the noise is small (< 1%), a condition
that does not appear to exist here. Until improved methods
are available, it would appear that this method for determining
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if a process displays the characteristics of deterministic chaos
will be of very limited utility when applied to experimental
data from physical systems.

High Reynolds number flows

Figure 2 is representative of the time trace obtained at higher
flow rates. The spectrum appears in Figure 15. Attractor di-
mensions were calculated for ten conditions in the range
Re=310-3,100 and include data for free-falling films as well
as those with countercurrent and cocurrent interfacial shear.
All of these traces were characterized by poor convergence and
high dimension. Extensive studies did not reveal any coherent
dependence on Re or on the amount or direction of the in-
terfacial shear. However, the high-frequency end of the spec-
trum still indicates an exponential decay, suggesting
deterministic chaos. It is likely that noise plays a large role at
these high rates where isolation of the svstem is more <“ifficult.

Discussion

An extensive literature exists for analyzing time-dependent
data using methods of fracial geometry. When the data are
deveioped from mathematical models these methods of anal-
ysis provide new insights into the behavior of these nontinear
equations. However, attempts to analyze data obtained directly
from experiment, as has been presented in thes paper, face
severe difficulties. Such data arc accompanied by significant
amounts of noise, and it is shown that noise levels eommonts
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Reprinted from AICHE JOURNAL, September 1990

A Numerical Study of Mass Transfer in Free
Falling Wavy Films

Numerical simulations of mass transfer into falling liquid films, both
through the wavy interface and from the wall, have been performed for
experimentally measured large waves within which the fiow fields have
been computed. Experiments have shown that the occurrence of waves
on free falling films causes dramatic increases in mass transfer into the
film, even under laminar flow conditions. Wave effects have been
modeled in several ways, none of which predicts the observed rate of
enhancement. The present numerical procedure includes solving the
convective-diffusion equation for wavy films by extending a technique
developed for hydrodynamic simulation. The presence of waves is
shown to cause significant velocities normal to each interface. In
conjunction with recirculation within the large waves, these flow pat-
terns produce transfer rates for large waves that are several times
larger than predicted for quasiparallel velocity fields. Experimental
wave structure data were used to define the dimensions and frequency
of an average large wave and surrounding subsirate. Computed transfer
rates at both the gas-liquid interface and the wali for a film composed of
a periodic sequence of average waves agree well with published data.
These simulations confirm the inadequacy of parabolic, or Kapitza-type
velocity profiles in formulating transport models.

Frederic K. Wasden

A. E. Dukler

Department of Chemicat Engineering
University of Houston

Houston, TX 77204

Introduction

The ability of liquid films to transfer large amounts of heat or
mass with low hydraulic resistance has led to their use in a wide
variety of industrial processes. For unit operations in which the
liquid phase is distributed as a film, the throughput of the unit is
often determined by the liquid-phase transport resistance;
trickle-bed and failing-film reactors, wetted-wall absorbers, and
vertical evaporators are examples. Upon contacting a solid
surface, liquid films quickly evolve to a complex array of waves
whose amplitudes vary from much less to much greater than the
mean thickness. This gravity-driven behavior is observed for ali
flow rates of industrial importance, even in the absence of
interfacial stresses due to adjacent gas flow. Figure | shows a
sample time tracing of the interface of a fully developed laminar
film falling freely down a vertical tube without gas flow. The

F. K. Wasden in presestly with Shell Development C

P Westhollow Ressarch Conter,
Howston, TX.
AICRE Journal Segptember 1990

presence of large waves flowing over . thin substrate which itself
is covered by small waves is clearly displayed.

Mass transfer in liquids is characterized by extremely long
time scales for molecular diffusion. The ratio of thermal to
molecular diffusivities in liquids is generally greater than {00,
suggesting that mass transfer rates reflect fluctuations in flow
field to a greater extent than do heat transfer rates. This
speculation has been confirmed by reviews of experimental
studies (Seban and Faghri, 1978; Henstock and Hanratty,
1979). This disparity is exploited in the present work to provide
a comprehensive cxamination of a combination of numerical
procedures.

A simplified view of a liquid film suggests that transport is
limited by diffusion in the direction normal to the transfer
surface. The velocity of a cortaminant traveling normal to the
interface as the result of diffusion is of the order of the ratio of
the diffusivity to the film thickness. The comparable velocity in
the streamwise direction due to advection is of the order of the
average film velocity. The ratio of the advective to the diffusive

Vol. 36, No. 9 13719




09

0.8

0.7

0.6

05

Fitm Thickness, mm

0.4

03

e | . A N i " .

02
2 200 400 600 800 1000

Tine, ms

F.gure 1. Film thickness time trace, Re = 880.

velocity, the Peclet number, is of order 10*-10* for industrially
important thin film flows. Experiments have shown that the
presence of waves on films causes dramatic increases in heat or
mass transfcr, even for laminar flows. While a wide range of
wave amplitudes exists, it is speculated tha* the large waves,
ranging from two to five times the substrate thickness in
amplitude, control the transport rates (Dukler, 1977).

Predicting the enhancement of transport rates due to the wavy
interface has provoked many studies of film hydrodynamics.
Since first being addressed by Kapitza and Kapitza (1949),
studies of the linearized hydrodynamics within wavy €lms have
yet to predict the wide variety of wave shapes, sizes, and speeds
observed experimentally. Numerical studies of the problem are
limited. Bach and Villadsen (1984) succeeded in predicting
velocity profiles in traveling waves using a finite-element tech-
nique, but their results were limited to Reynolds numbers less
than 100. The film Reynolds number is defined as Re = 4Q/»,
where @ is the mass flow rate per unit perimeter and » is the
kinematic fluid viscosity. Recent numerical studies of hydrody-
namics in isolated and interacting largc waves at a Reynolds
number of 880 (Wasden and Dukler, 1989a, b) have provided
information on the flow fields existing in these waves. The
hydrodynamic studic- predict regions of large streamwise accei-
eratiun in the waves as well as recirculating zones. Nakaya
(1989) has also found these flow patterns in large waves at low
flow rates.

This study focuses on numerical prediction of mass transfer to
laminar free falling films for both gas absorption at the free
surface and dissolution at the wall in the presence of compli-
cated velocity fields. The former situation has been studied
extensively, both experimentally and theoretically, and is re-
viewed by Henstock and Hanratty (1979). Information un the
wall transfer is much more limited.

Existing Models and Experimental Studies
Mass transport in flat films

Early attempis at describing transport in films were limited to
situations where the film was assumed to be flat. Transfer from
the adjacent gas phasc into the film through the free interface is
illustrated in Figure 2. The transport is goveraed by the
convcctive-diffusion equation, which can be written in two
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Figure 2. Absorption through the surface of _ fiat film.

dimensions as
dc dc ¢ e  dc
(1)

5‘;+ua+v§;= 5;3-(»5}7

where ¢(x, y, t) is the concentration of the species and u(x, y, t)
and v(x, y, t) are the velocity components in the streamwise (x)
and normal (p) directions. For steady flat film flow, the
parabolic velocity profile is used for the axial velocity and the
convective-diffusion equation reduces to

ac  gh*fy y'\ac 3¢
u(}')axz";(z—ﬁi 5}=D;3;5 (2)

where streamwise diffusion is negligible at the high Peclet
numbers experienced in practice. For absorption, the boundary
and initial conditions assume an initially pure solution with a
saturated interfacial condition and no flux at the wall:

dx,y) =0 at x=0forally (3a)

C(.X, h)=cu(urll:d = & at y = h fol’ a" x (3b)

% o 0 for all (3¢
ay_ at y==0forallx C

The first analytical solution of Eqs. 2 and 3 was presented by
Pigford (1941), who assumed that the gas-liquid contact time
was short enough that variations in concentration occur only in a
boundary layer near the free interface. Replacing the condition
of Eq. 3c with ¢{x,0) = 0 enabled him to find a closed-form
solution for the local mass flux at any position x, and for the
mass flux averaged over a column length of L. The fatter solution
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15 given below and s referced to as the short contact time theory
(SCTT) mass transfer rate,

1Dgh’L
v

(4)

Nycrr = ¢,

Mass transfer from the solid wall into the falling liquid film is
seldom encountered in industnial practice, although its analog,
the process of heat transfer from the wall is quite common.
Figure 3 illustrates the mass transfer situation for a flat film in
which a portion of the wall is considered 10 be active, or capable
of supplying mass to the film. Boundary and initial conditions
are similar to those for the absorption problem. An initially pure
solvent is assumed to be saturated at the liquid-solid interface
and no transport is allowed at the free interface:

lx,y) =0 at x=0 (3a)
(x,0) =¢, for y=0, O<x<l, (5a)
X o h 5b)
ay - at y = (
ac
—=0 at y=0 for x>1, (5¢)

ay

No general analytical solution to the governing equations
exists for arbitrary lengths of the active region, L,. For small
diffusivities (large Schmidt numbers) and smalf contact times, a
boundary layer analysis similar to Pigford’s was proposed by
Acrivos {1960). In the limit of low Peclet numbers (high mass
diffusivity), Spence and Brown (1968) solved the transport
problem using a Frobenius series to solve the ordinary differen-

/C\~'V)=°
] Y
Yey

AN

\/

| u(y)

C{saturated) K P
X y =0

La

/-—'—C(X,Y)

Figure 3. Mass transfer from solid boundary into flat film.
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tial equation generated by the Laplace transform of the oniginal
partial differential equation. In principle, this method can be
extended 1o the general case, but the Frobenius series does not
possess sufficicuily robust convergence characteristics 10 altow
its use.

Gas absorption through the wavy interface

Most gas absorption experiments that have been reported
provide information on mass flux or mass transfer coefficients
averaged over the entire length of film. Simultancous local
measurcments of time-varying wavy film thickness and concen-
trations have not been reported, so little information is available
on the local transport process. Emmert and Pigford (1954)
reporied mass transfer rales in agreement with short contact
time predictions, Eq. 4, when a surfactant was added o suppress
waves. In the absence of surfactant, mass transfer rates two to
three times greater than observed for flat films were measured
for Reynolds numbers of 200-1,200 and Schmidt numbers
between 400 and 500 in a column 1.1 m long.

Kafesjian et al. (1961) examined the rates at which a species
is absorbed and desorbed from a film. No equivalent 1o the short
contact time theory exists for desorption since the concentration
is uniform in the incoming fluid. Measured values of desorption
from the film suggest an additional 20-30% enhancement over
the absorption rate computed from correlations of Emmert and
Pigford, implying that waves do more than stretch and contract
the velocity profile. By imposing external disturbances and
generating standing waves of various amplitudes and frequen-
cies on stationary horizontal films, Goren and Mani (1968)
measured mass transfer rates greater than ten times the values
expected for smooth films, with increases scaling roughly
linearly with wave amplitude.

Data from a variety of investigators published over a three-
decade period were correlated to film Reynolds number and
Schmidt number by Henstock and Hanratty (1979). The data
reflect a variety of columns sizes, with Schmidt numbers ranging
from 250 to 1,200 and Reynolds numbers from 100 to 10,000,
encompassing laminar and turbulent films. The ratio of the mass
transfer coefficient from their correlation to that of the short
contact time solution, k, ¢cr, is:

k L/k
L 00111 (L/Ax)

Py R [(0.707 YRe)?

E =

+ (0.0310°%Re)’1*®  (6)

where k, is the liquid side mass transfer cocfficient averaged
over the film length L and A, is the Nusselt or time-averaged
film thickness. Equation 4 can be used to show that

3Dy Re

kiscr =\ 32T hn M
The enhancement, E, depends only on film Reynolds number
and length, varying from 1.15 for L/h, of 3,000 and Reynolds
number of 100 to 2.9 for L/hk,, of 10,000 and Reynolds number
of 1,000. An enhancement of nearly fifteen times is predicted for
a turbulent film with a Reynolds number of 10,000 and length
L/hy, of 10,000. The additional interfacial area due to the waves
over that of a flat interface has been shown to be negligible over
a wide range of flow rates (Portalski and Clegg, 1971), so the
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enhancement in Eq. 6 is not influenced by differences in
interfacial area due to the presence of waves.

The modeling of gas absorption in faliing films has proceeded
along four paths.

1. Levich (1962) extended the short contact time solution to
atlow the surface velocity to vary with film thickness. Treating
the interface as a periodic array of smali-amplitude traveling
capillary waves, Levich used the model of Kapitza and Kapitza
{1949) to predict the surface velocity and concluded that the
enhancement, £, would be about 1.15. Ruckenstein and Ber-
bente (1965, 1968} also used the Kapitza hydrodynamic model
and approximated the interface as small-amplitude traveling
waves described by two Fourier modes. The concentration
profile in the film was approximated by a power series in the
coordinate normal to the interface and an enhancement of about
30% was predicted. Since the Kapitza wave model describes
only capillary waves the results are applicable only for very low
Reynolds numbers.

More recently, Barrdahl (1988) solved the convective-
diffusion equation for transport into wavy films at very jow
Reynolds numbers, near the condition of wave initiation. He
showed that mass transfer enhancement due to small waves
scales with Pe'/t. Howard and Lightfoot (1968) arrived at the
same conclusion by treating the interface as a periodically
stretching surface. Javdani (1974) suggested 2 model for
wave-induced concentration fluctuations similar to simple eddy
viscosity models. Using the Kapitza model for the velocity
profile he proved only that enhancement scales as Pe'/2.

2. The models discussed above are deficient in their neglect of
the presence of large roll waves and the substantial velocities
normal to the interface that can be expected to accompany
them. Attempts to relate the increased mass transfer to large
wave properties using surface renewal models are summarized
by Davies (1972) and Dukler (1977). Banerjee et al. (1967)
proposed a renewal model which assumed that the large waves
mixed with the substrate over which they passed, bringing fresh
solution to the interface. Closing the problem required a relation
between the Reynolds number and large-wave frequency; this
was derived from linear stability considerations. Since linear
stability analyses characterize only small capillary waves (Ben-
jamin, 1957), this choice of relationships is questionable. The
mode} was modified by Brumfield et al. (1975), incorporating
new data on large-wave frequencies (Telles and Dukier, 1970).

3. Wave-induced turbulence was suggested by Suzuki et al.
(1983) as a means of explaining the enhanced mass transfer
rates. The method proposed a turbulent diffusivity for both large
and small waves whose definition was empirically related to the
size and velocity of the waves. Poor agreement between pre-
dicted and measured transport rates was reported for instances
in which this model was applied to flows with many large waves.

4. Films sheared by the surrounding gas have been studied
experimentally . "?cCready and Hanratty, 1985) and analyti-
cally (McCready ct al., 1986; Back and McCready, 1988). It is
suggested that shear stress variations due to gas flow around
waves induce normal velocities near the interface which influ-
ence mass transfer. Of course, this mechanism is not applicable
to the case of free falling films.

The experimental evidence accumulated over the past three
decades shows that mass transfer enhancement duc to waves on
films cannot be explained with models using any variant of the
Kapitza capillary wave velocity profilc. Models based on large-
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wave-induced surface renewal sufler tor fack of a complete
characterization of wave structure, frequency, and amphiude
distribution. Analyses based on more robust hydrodysamic
models appear (o be the logical next siep toward reconciling
experimental measurements and predicted transfer rates

Mass transfer from the wall

Few experimental studies of this problem have been reported
Referring to Figure 3, most experiments have been conducted
with a contaminant affixed 10 a tube wall or flat plaiec over a
distance L, A film was allowed to flow over the solute, with
careful attention (. complete wetting of the surface. Mass
transfer rates were determined cither by weighing the plate
before and after the experiments or by measuring the outlet bulk
concentration of the fluid.

Stirba and Hurt (1955) attempted to relate the increased
transfer rate due to the waves to a universal eddy diffusivity.
Experiments in 2 m long tubes coated with organic acids over
lengths from | to 1.5 m showed apparent diffusivities ranging
from three to twenty times the molecular diffusivity, depending
on the Reynolds and Schmidt numbers. Reynolds numbers in
the study varied from 300 to 3,000, and Schmidt numbers irous
600 to 18,000. No general correlation of the results was
presented.

Oliver and Atherinos (1968) conducted experiments in an
inclined channel at angles of 30° or less with the horizontal,
Re < 200, and length of about 0.3 m. They found that transfer
rates were described adequately by a short contact time, smooth
liquid film theory analogous to that of Pigford for gas-liquid
transfer. However, the conditions of the experiment were such
that large waves were not present. Oliver and Atherinos suggest
that the difference between their result and that of Stirba and
Hirt is due to the presence of large waves in the latter
experiments while theirs only showed capillary wave motion.

Mass transfer from 2 wall to a liquid is represented by a
substantial body of literature because of interest in the use of
electrochemical probes to measure wall shear stress (Hanratty
and Campbell, 1983). However, these models all assume the
existence of a very thin concentration boundary layer near the
wall through which the velocity profile can be assumed to be
lincar. This condition is a very specialized one and not of general
applicability. No analytical theories exist that can be used to
explore the effect of wave motion on this wall to fluid transfer.
Speculation about the effect of large waves on transfer rates is
possible through an examination of the velocity profile near the
wall, where the streamwise velocity can be approximated using a
Taylor expansion,

d
u(x,y, 1) ~ u(x,0,1) + (55) Y+ (8)
{0.0.0)

where u(x, 0, ) is identically zero, and the derivative term
represents the wail shear stress. Using the continuity equation,
the normal velocity is seen to be approximated by

ya fr,
v(x, y, 1) T axlm 9

This simple scaling shows that mass transport enhancement is
expected near the front and rear or large waves, where wall
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hear stress values are rapidly changing (Wasden and Dukler,
1989a, b).

Computationat Procedure

The numerical study focused on simulating mass transfer in a
series of seven experimentally measured large wave shapes
chosen from film thickness traces obtained at a Reynolds
number of 880. The wave shapes chosen included both isolated
and interacting waves and were representative of all large waves
existing on the fitm. Simulation of mass transfer through cither
the wavy interface or from the wall combined three numerical
algorithms. First, the  and v velocity fields were computed for
cach wave using a finite-difference numerical algorithm based
on the TEACH-T code (Gosman and Ideriah, 1976} and
described elsewhere (Wasden and Dukler, 1989a, b). The hydro-
dynamic simulation was performed under the assumption of
passive scalar transport, that is, the presence of the diffusing
species did not affect the physical properties of the fluid.
Boundary conditions required to specify the concentration
distribution in the flat film surrounding the large waves were
then computed from a numerical solution of Egs. 2 and 3 or Eqs.
2 and 5. The final step in the transport simulation was the
solution of the ~~nvective-diffusion equation using the velocity
and spatial shape profiles determined in the hydrodynamic
simulations.

Gas absorption through the wavy interface

The gas absorption problem simulated in this study is illus-
trated in Figure 4. Each large wave is modeled as being
surrounded by a flat film in which the concentration field is

Coy)=0

0 r—

- Initial contact area - smooth film

A\
\ X

C {saturated)

C(Ly) intet

Figure 4. Absorption through large waves.
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described by the solution of the flat film problem, Eqs. 2 and 3,
for a given position of the wave in the column, L. Mass transfer
through the wavy interface is computed as the wave passes a
location L below the feed. A locally variable wave velacity,
V_(2). is determined in the course of the hydrodynamic simula-
tion and used to approximate the unsteady terms in Eq. 1,

ac y de 0
Fria AL (10

The solution is then generated for a sieady probiem in a
coordinate system moving with the wave. The convective-
diffusion cquation for this planar flow is then written

c ac &c Fe
- a7t + ay ()

a
(u~V,)az+vé;=D

where the coordinates are shown in Figure 4. At the solid
boundary , y == 0, a no-flux condition, Eq. 3c, is imposed while
the free surface streamline corresponds to a saturated sofution,
Eq. 3b. The inlet condition, at z = L, is determined by a
numerical solution of Eqs. 2 and 3 for given Peclet number,
substrate thickness, and fluid properties. The outlet condition, at
z = [ —X, corresponds to negligible steamwise concentration
gradients, or

X)) ~o
6z 1-L-A~ (12)

where A is the wavelength of the large waves and includes only
the sloped portions of the wave.

The solution of the transport problem was generated from a
modified version of the finite-difference algorithm developed for
the hydrodynamic problem (Wasden and Dukler, 1989b). In
order to increase accuracy, a novel version of a quadratic upwind
differencing technique, QUICK (Leonard, 1979), called NU-
QUICK-ER was developed for approximating convective terms
in both streamwise and normal directions. A mass source
calculated using the concentration gradient at the surface was
added to the mass conservation cquation for those control
volumes bordering the free interface, while no mass was allowed
to leave the control volume through the wall. Details of the
numerical method and surface treatment techniques appear
elsewhere (Wasden, 1989).

The concentration field within each wave determined in this
way was used to compute values of the local mass flux at the
interface through Fick's law. Of particular interest is the mass
flux integrated over the wavelength. The local flux given by the
short contact theory can be integrated over the wavelength to
yield

N

=

gD hy
2x»

(VL - YT N} (13)

Grid refinement studies showed that the grid mesh necessary
to fully resolve hydrodynamic details in the large waves provided
sufficient detail for transport modeling. Approximately 2,000
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mesh cells were used in cach casc. The iterative solution of the
transport problem was continued until the sum of mass residuals
throughout the wave was less than one part in 10* of the total
mass transferred across the interface. Execution tune for the
code was between 200 and 300 CPU seconds on an NAS 9000
mainframe computer.

Mass tansfer from the wall

Mass transfer from the wall was computed by tracking the
evolution of concentration profiles with time as the waves
traversed the soluble surface. The total amount of mass accumu-
lated by a wave was compared to that numerically computed for
a smooth film having the same time of exposure to determine the
enhancement due to the presence of the wave.

This simulation procedure required an algorithm designed
specifically for unsteady simulations. The physical situation
described by the model is shown in Figure 5. For this problem,
the unsteady convective-diffusion equation is given by Eq. 1 with
the coordinates as defined in Figure 5. Time begins when the
wave front reaches the upper end of the active surface, where the
film is assumed to be composed of pure soivent, Eq. 3a. Along
the soluble surface, the concentration is equal to the value of a
saturated solution, Eq. 5a, while no flux is allowed at the wall in
regions outside the active region, requiring

(ac) 0,x<0,x>L (14)
o =0,x<0,x>
3 Jixon “

1 - Y

g
) / %%- °
#— h{x.t)

=0:C{xyt)=0

Cixyt)

C {saturated)

I

Figure 5. Mass transfer from solid boundary into a pass-
ing wave.
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No mass s allowed 10 pass through the wavy interface, or

2 —
9% Jiahiznral TEEAEn ()
The problem formulation includes two parameters, the length of
the active surface, L, and the Schmidt number. As in the case
of mass transfer to the interface, the simulation used the same
rectangular grid mesh as the hydrodynamic simulation; roughly
2,000 grid points were specified for each large wave. The small
grid spacing used near the wall 10 resolve the wall shear stress in
the hydrodynamic problem was suitable for the mass transfer
problem where the concentration varied rapidly near the wall.

The unsteady term in the convection-diffusion equation was
approximated with a first-order impticit finite-difference tech-
nique as recommended by Patankar (1980). The unsteady term
adds a source term to the discretized equations that is easily
assimilated into the control-volume-based method on which the
algorithm was based. The implicit method is unconditionally
stable for the present problem, insuring that the temporal
behavior of the results are reasonable approximations to the true
solution. To reduce errors in the solution, time step sizes of less
than i ms were used.

The solution procedure began with the concentration field set
to zero. As time advanced one step, the wave moved a distance
determined by the velocity near the wall for the first grid cell.
The first streamwise wall cell was specified as having a constant
concentration boundary condition, therefore allowing a flux of
solute, while al! other wall cells were bounded by the solid wall,
with a no-flux condition imposed. At this location and time, the
concentration field was determined by solving the system of
linear equations representing the finite-difference form of Eq. 1
using an alternating direction implicit (ADI) technique. This
iterative technique was continued until the solution had con-
verged to within one part in 10*. The wave was then allowed to
move downward another time step. The distance moved with
each time step depended on the velocity associated with each
grid near the wall; the algorithm adjusted the time step such
that each step corresponded to moving the wave sufficiently that
one more whole grid cell was subject to a flux condition. The grid
mesh spacing in the streamwise direction was specified such that
smaller grids were assigned to regions in which the velocity fields
were changing rapidly. This grid spacing scheme insured that
smaller time steps were taken in these regions, and that the mass
transport was accurately approximated. Implicit in the simula-
tion is the condition that each wave continues to evolve in the
same way that was determined for a single location. This
assumption is justified for an isolated wave changing very little
with distance. In contrast, evolving and interacting waves are
probably not well described by this criteria over a long distance.
The present simulation will be limited to reasonably short active
surface lengths in order to minimize this error.

Concentration fields were determined for each wave for fixed
values of the active surface length and various Schmidt num-
bers. The algorithm required about 1 CPU second (on an NAS
9000 computer) for ecach time step, and for most cases, 200-300
CPU seconds were sufficient to complete each simulation.

Average Wave Structure of the Falling Fiim

An average wave structure was defined from time records of
film thickness measurements taken at Re = 880 to determine
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whether the statistically defined average wave, if distributed
zlong the surface, would yield computed mass transfer rates
comparable to experimental values. The film is modeled as
periodic average waves separated by a rippled substrate.

Film thickness data from which the large wave profiles were
taken were examined to determine the characteristics of an
average large wave, Figure 6 illustrates the components of the
proposed film structure, a scries of triangular waves traveling
over a flat substrate. Data consisting of 45 s of film thickness
signals taken at two locations and sampled at 1kHz per channel
were analyzed using traditional statistical techniques to arrive
at the dimensions and velocity of the wave structure.

The wave velocity was determined by dividing the distance
scparating two film thickness probes (63 mm) by the time delay
of the maximum of the cross-covariance of the signals. The time
of the first zero of the film thickness autocorrelation provided an
average wave frequency, f, from which the total length of the
wave in the time domain was determined as

1
Z=L+ 0+ (i6)

S

wheret,, 1, and ¢, are the lengths (in a time domain) of the front
of the wave, the tail, and the separating substrate. Averaging
over the ensemble of all measured waves separated by a
substrate thinner than the mean thickness provided average
values for ¢, and t,. The extent of the substrate, £, is then
determined using Eq. 16.

The average substrate thickness, h,, was chosen as the value
below which 5% of the film thickness points fell. This value
approximates the average of the minimum values of film
thickness between large waves. With this value, the problem was
closed using the volume conservation equation

h, — b\ (4 + 1)
h”="‘+( 2 )(t,+t,+t,,) an
which can be solved for the peak thickness,
2€(hy — h) Uy + £, + 4,

The experimental data analyzed with this method had an
average thickness, h,, of 0.365 mm, an average substrate

thickness. A,, of 0.260 mm, and an average peak thickness, &,
equal to 0.614 mm. The peak to substrate ratio 1s 2.36. An
average frequency of 6.9 Hz was computed, along with average
1,0f 33.3 ms and ¢, of 51.0 ms. The substrate duration, 7,, was
computed to be 60.7 ms. The wave velocity for the film was
determined to be 1.15 m/s. Streamlines resulting from the
hydrodynamic simulation of the average wave are shown in
Figure 7.

Results
Gas absorption through the wavy interface

Simulations were carried out for seven large waves whose
profites were measured 3.1 m below the feed and which were
representative of all isolated and interacting waves. For each
wave, the Schmidt number was varied from 250 to 1,000, while
the distance below the feed ranged from 1,000 to 6,000 Nusselt
thicknesses. This parameter space encompasses nearly all indus-
trially important gas-liquid diffusion systems and column
heights. For each of the parameter pairs, a concentration ficld
was determined. The local variation of mass flux could then be
computed from the gradient of this concentration at the inter-
face and the total flux through the interface determined from
the integration of this local flux along the wave, Two waves will
be discussed in detail: an isolated wave with peak/substrate
thickness of approximately three and an interacting wave.
Streamline maps for these waves are given in Figures 8 and 9.

Concentration ficlds computed for the isolated large wave are
shown in Figure 10 for Schmidt numbers of 500 and 1,000 at a
distance of 4,500 mean film thicknesses below the feed (1.63 m
for a Reynolds number of 880). These conditions are compara-
ble to those investigated experimentally by Emmert and Pigford
(1954). The concentration profiles are presented as contour plots
with intervals of 0.1 saturated concentration units dividing
successive contour lines. Both concentration profiles show signif-
icant deviations from parallel isoconcentration lines predicted
by the short contact time theory (SCTT). Normal (v) velocities
within the wave peak carry solute from the surface into the
wave. Near the front and rear of the wave, normal velocities
resulting from the wave peak interacting with the substrate
force the solute into the substrate. The effect of the Schmidt
number is seen in the extent to which the concentration field
penetrates the wave substrate; for a higher Schmidt number,
this penetration occurs to a fesser extent.
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Figure 6. Average film structure dimensions. Figure 7. Streamline map for average large wave.
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Figure 8. Streamline map for representstive Isolated
wave.

A profile of the local mass flux (for a saturated concentration
of 1 kg/m?) for the isolated wave is presented in Figure 11 for a
Schmidt number of 500. The absence of normal velocities near
the interface greatly affects the local flux near the front and rear
stagnation points, where the local fluxes approach those ex-
pected for a purely diffusive situation. In contrast, near the front
and behind the peak of the wave, convection increase the local
flux by several times over the diffusive limit. Comparison of
Figures 10 and 11 shows that the maxima in local flux values
correspond to regions in which the wave peak interacts with the
slowly moving substrate. This hydrodynamxc process is also
responsible for the dramatic increase in wall shear stress over
that for parallel flow. Concentration and local flux profiles for
the average wave were similar to those computed for the isolated
wave. Previous models that suggest surface renewal as a result of
large waves interacting with the substrate are now seen as
clearly inconsistent with the computed concentration profiles.

Figure 12 shows the concentration proﬁlc in an interacting
wave for a Schmidt number of 500 appearing 4,500 mean film
thicknesses below the feed. The local flux profile for this
interacting wave is shown in Figure 13. The profile appears to
approximate the sum of the profiles obtained from isolated
waves. The extra stagnation points create additional extrema in
the profile, with the minimum occurring in the trough between
the waves as a result of the stagnation region separating the two
counterrotating recirculation zones. The presence of the stag-
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Figure 9. Streamiine map for representative interacting
wave.
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Figure 10. Concentration profiles in isclated wave 4,500
mean fiim thicknesses below feed for Schmidt
nos. 500 and 1,000.

nant zone separating the peaks dampens the effect of the
interacting waves on mass transport. Compared to the SCTT
prediction, enhancements are close to those associated with
isolated waves.

The integral of the local flux along the wave was normalized
by that cxpected for SCTT as given in Eq. 13. The predicted
mass transfer to an isolated wave was then computed by
weighting the flux through the wavy interface and the rippled
substrate. Since the substrate was covered with capillary waves
it was modeled using an enhancement of 30% as given by the
model of Ruckenstein and Berbente (1968). The enhancement
for the wave and its associated substrate was then computed
from:

Total flux 17+ 1, \Fluxduetowre
SCTT prediction ~ \t; + t, + 1,/ SCTT prediction
+ (m)(l 30} (19)

Enhancement factors computed for the seven waves whose
profiles were measured are presented in Figure 14 for several
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Figure 11. Local mass flux values for isolated wave for
conditions of Figure 10 and Sc¢ = 500.
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Figure 12. Concentration profiles in Interacting wave
4,500 mean film thicknesses below feed for
Sc = 500.

locations below the entry. It should be recognized that the wave
profile and velocity vary along the length of the film (Zabaras
and Dukler, 1988) while for these computations the profile
measured at L/h, = 8,550 (3.1 m) was used for the mass
transfer computation at all locations. The numerical analysis
predicts mass transfer rates 1.7-3.5 times greater than the short
contact time predictions. A comparison with experimental data
as corrclated by Henstock and Hanratty (1979) is included in
this figure. The experiments represent mass transfer rates
averaged from L/hy of zero to the indicated value while the
computation describes the local rate as the wave passes a
particular L/h,,. Similar qualitative trends in enhancement are
clearly seen in both computed and measured values.

Figure 15 compares the enhancement computed for the
average wave uniformly distributed across the length of the
interface with the experimental enhancement given by the
Henstock and Hanratty (1979) correlation. The agreement in
magnitude and trend is now semiquantitative. Furthermore, the
discrepancies can readily be understood. For short columns the
waves are smaller and the rate of mass transfer would be less
than that computed for the average film structure in the figure.
At large values of L/h, the existence of waves above this
location changes the inlet condition used in the computations to
one of a more uniform concentration as a result of the successive

Fitm Thickness
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Flim Thickness, m & Fiux*10

\ Flux, SCT
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Figure 13. Local mass flux values for interacting wave for
conditions of Figure 12.
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Figure 14. Computed and observed mass transfer en-
hancement for transfer through wavy inter-
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mixing induced by the upstream waves. This would lead to
larger concentration gradients at the surface and consequently a
higher mass transfer rate than predicted by the simulation.
Inclusion of these effects would produce even closer agreement
between the model and experiment. Once the ability to predict
the average profile as a function of position along the film is
developed these factors can readily be incorporated into the
computation.

Mass transfer from the wall

Simulations of the mass transfer in the two waves discussed in
the previous section will be presented. Concentration ficlds,
average concentration values [across the film, from y = 0 to
y = h(x, t)], and total mass accumulation were determined for
fixed values of the active surface length and various Schmidt
numbers. Mass transfer enhancement due to large waves was
determined by computing the total mass within the large wave
after it had passed over the active surface and comparing it to
the amount of mass accumulated by a flat film of thickness &,
which had been in contact with the active surface for the same
amount of time. The active surface length for the present results
was 800 average film thicknesses, or roughly 0.29 m for a
Reynolds number of 880. This value represents about one
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Figure 15. Mass transfer enhancement computed for av-
orage film structure compared to observed
values for S¢ = 500.
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wavelength. Results for Schmidt numbers of 200 and 1,200 are
presented. Fluid physical properties were taken as identical to
those used for the hydrodynamic simulation, leading to Peclet
numbers ranging from .76 x 10° to 1.056 x 10%

Average concentration profiles (normalized by the saturated
wall concentration) for the isolated large wave are presented in
Figure 16. The increase in average concentration ahead of the
peak is due to the strong normal velocities at the wall in this
region, which result from the rapid change in wall shear stress.
The average concentration profiles appear to be affected mast by
the strong hydrodynamic interactions between the wave peak
and body with the surrounding flat film. Other hydrodynamic
processes caused by the wavy interface apparently do not
penetrate to a level sufficient to alter the transport processes at
the wall,

Further evidence of the strong normal velocities near the wall
is found in the profiles of near wall concentrations, Figure 16b.
The near wall concentrations are those that are found in the first
cell inside the boundary and are proportional to the concentra-
tion gradient at the wall. These values are significantly lower
directly under the steepest part of the wave front, which
corresponds to the region in which the shear stress is a
maximum. Average and near wall concentrations are closest in
magnitude near the front and under the peak of the wave. In
contrast, the surrounding regions of substrate are characterized
by near wall and average concentrations that differ by as much
as a factor of ten.

Increasing the Schmidt number reduces mass diffusivity,
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Figure 16. Variation of concentration with film thickness
and Schmidt numbar for isolated wave.
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increasing the resistance to mass transport into the waves.
However, the presence of significant normal velocities near the
wall reduces this effect. For large Peclet numbers, increasing the
Schmidt number six{old (from 200 to 1,200) would be expected
to decrease the average concentration by the same factor if no
normal velocities were present. However, Figure 16a shows that
the average concentration is reduced by no more than three
when the hydrodynamic effects are included. In a flat film, the
near wall concentrations would be expected to scale inversely
with Schmidt number, as the flux is directly proportional to the
diffusivity. Figure 16b shows that the near wall concentration
decreases by no more than one-half when the Schmidt number is
increased sixfold, further illustrating the extent 10 which normal
velocities alter the mass transfer resistance.

Flow within the interacting wave produces the concentration
profiles shown in Figure 17. The presence of two interacting but
separate closed recirculation regions within the peaks signifi-
cantly increases mass transfer through the wavy surface and
apparently has the same effect on transport from the wall.
Pronounced changes in the average concentration accompany
increasing mass diffusivity in the interacting wave. While the
near wall concentration variation is magnified by low diffusivity,
the variation in average values suggests that once the mass is
transported into the peak regions, diffusion becomes important,
as the average concentration profile associated with a lower
diffusivity is smoother than expected.

Mass transfer enhancements for three interacting waves, the
isolated wave, and the average film are presented in Figure 18.
Experimentally determined enhancements from Stirba and
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Hurt (1955) at Reynolds numbers between 850 and 900 are
included for comparison. Values for the average film fall
between the large waves and agree reasonablly well with the
data at higher Schmidt numbers. At lower Schmidt numbers,
the simulations appear to overpredict the enhancement. The
discrepancy results from two experimental limitations. Stirba
and Hurt report difficulties in fully wetting the surface of the
benzoic acid with water (Schmidt number 609), which would
decrease the accumulation by the wavy film. For alcohol-
organic acid systems (Schmidt numbers > 800) no wettability
problems were encountered and the comparison is correspond-
ingly more favorable.

In the limit of very small Schmidt numbers, the enhancement
due to the complex hydrodynamics vanishes, but for Schmidt
numbers as low as 200 this enhancement may still be as large as
500%. As the Schmidt number increases above roughly 1,200
the enhancement associated with large waves begins to decrease
due to the inability of the fluid to diffuse into the regions of the
flow in which normal (v) velocities exist. It is expected that for
Schmidt numbers of industrial interest, normally less than
5,000, the enhancement due to large wave hydrodynamics will
be at least 500%.

Conclusions

The interface of a falling liquid film is covered with a random
array of small and large waves interacting in a complicated
manner, including many with peak thicknesses several times the
mean. Neglecting the influence of the large waves causes most
models to seriously underpredict experimentally observed trans-
fer rates. Numerical simulations of the hydrodynamics within
large waves presented previously (Wasden and Dukler 1989a, b)
exposed mechanisms through which transport would be aug-
mented. Hydrodynamic data obtained from this procedure were
used in the simulation of passive transport in these large waves.
The importance of the complex hydrodynamics within the waves
has been demonstrated by the semiquantitative agreement
between computed and measured transfer rates at both inter-
faces. Future modeling of transport processes in wavy films must
include provisions for predicting the significant normal velocities
at each interface and relating them to the interfacial structure.

The random interface has been approximated by an interface
composed of periodically occurring, statistically average waves
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interspersed among smaller ripples. Mass transfer rates com-
puted for such an array are 1.5 to 2.5 times greater than that
predicted for gas absorption into nonwavy films and four to
seven times greater than the flat film prediction for a dissolving
wall. These enhancements are in reasonable agrecment with
experimental observations.
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Notation

¢ = local contaminant concentration, kg/m’
D = gas-liquid or liquid-liquid diffusion cocficient, m*/s
E = mass transfer rate enbancement, Eq. 6
[ = average wave frequency, Hz
g = acceleration of gravity, m/s?
& = local film thickness, mm
h, = substrate thickness of average wave, mm
h, = peak thickness of average wave, mm
h, = time average, or Nusselt film thickness, mm
k, = liquid-side mass transfer coefficient, m/s
L = length over which gas contacts a falliag film, m
L, = length of contaminated portion of wall, m
n = coordinate normal to wavy interface, m
Nserr = mass transfer rate predicted by short contact time theory,
kg/m . s
Pe = Peclet number, Re - Sc
Q = liquid film flow rate per unit perimeter, U, A, m’/s
Re = film Reynolds number, 4Q/»
Sc = Schmidt aumber, /D
1, = duration of average wave back, ms
t, = duration of average wave front, ms
1, = duration of substrate separating average waves, ms
u = local streamwise velocity, m/s
U, = time average, or Nusselt film velocity, m/s
v = local velocity normal to boundary, m/s
¥, = wave velocity, m/s
x = axial coordinate in lab frame, m
y = coordinate normal to boundary, m
z = axial coordinate fixed on wave, m

Greek letters

p = liquid density, kg/m’
» = liquid kinematic viscosity, m?/s
# = liquid absolute viscosity, kg/ms
7, = wall shear stress, N/m’®
A = length of sloped sections of large wave, m
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Insights into the Hydrodynamics

of Free Falling Wavy Films

Three isolated waves of differing amplitude and shape were selected
from experimental measurements of a falling liquid film at Re = 880 for
study using an algorithm developed for solution of the Navier-Stokes
equations. The method computes the velocity and pressure fields as
well as the velocity of the wave. The results show that large streamwise
accelerations exist along with regions of recirculating flow in a movinyg
coordinate system. These features can explain the enhanced rates of
heat and mass transfer observed in wavy film flow. Computed wave
velocities and wall shear stress were in reasonably good agreement
with measurements. Wave velocity is shown to be sensitive to small
variations in the wave shape and explains the apparent random varia-
tion of wave velocity with amplitude that has been observed experimen-
tally. This numerical experiment points to the shortcomings of the many
methods used to model large waves on falling films that have been

Frederic K. Wasden, A.E. Dukler
Department of Chemical Engineering
University of Houston

Houston, TX 77004

based on parabolic velacity profiles.
Introduction

Thin liquid films falling under the influence of gravity along
solid surfaces are encountered in a wide variety of industrial
process equipment, including wetted-wall absorbers, falling-
film chemical reactors, condensers, and vertical tube evapora-
tors. Reliable design of these processes depends on the ability to
accurately predict the transport rates of heat and mass to the
flowing film. At flow-rates of industrial interest, falling films
(even in the absence of gas flow) evolve to a highly irregular
wavy interface. Figure 1 displays a short time trace of such a
falling film. The surface is covered by a complet array of large
and small waves moving over a substrate that is less than the
mean film thickness. The large waves, which range in amplitude
from two to five times the substrate thickness, carry a large frac-
tion of the total mass flowing, and are speculated to control the
rate of transport (Dukler, 1977). Before the heat or mass trans-
fer rates to such films can be modeled it will be necessary to
understand the velocity distributions that exist within these
waves, as well as their evolution. The present work focuses on
the former question.

Making reliable experimental measurements of the velocity
distribution in the films is exceedingly difficult due to the
extremely small film heights (~1 mm), very short passage time
of each wave (=60 ms) and the random location of the wave
height, as seen in Figure 1. Nonintrusive methods such as LDA
(Laser Doppler Annenometer) do not provide sufficiently fine
resolution to investigate velocity profiles. Thus, experimental
measurements appear limited to the time variation of wall shear
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stress and film thickness. As a result, analytical models have
been developed in the absence of hard data on the true flow con-
ditions that appear to exist in the waves.

Most analytical models extend the concepts advanced by
Kapitza (1964) based on the use of a parabolic velocity profile
and assuming that the streamwise hydrodynamic variables scale
with the wavelength. In examining various models developed to
that date, Dukler (1972) concluded that all failed to accurately
represent any measured characteristics of the wave except at
Reynolds numbers well below those of industrial interest.

Maron et al. (1985) treated isolated waves as a series of seg-
ments, each having a different type of velocity distribution
depending on the physics of the region. In the substrate, a para-
bolic velocity profile was adequate, while the flow under the
front of the wave was assumed to be fully mixed. The slowly
varying wave back was described with a boundary layer model.
Upon matching these solutions at the segment boundaries, it
was possible to predict wave mean characteristics (height,
length, velocity, substrate thickness) in reasonable agreement
with the values measured by Zabaras (1985). The model was
fitted with a limited amount of data from experimental mea-
surements and it failed 10 explain the large variation observed in
individual wave amplitudes and lengths.

Modeling the wavy film flow by a direct solution of the Nav-
ier-Stokes equations is hampered by numerical stiffness im-
posed by the stress-free interface; as a result, convergence is dif-
ficult except at the lowest flow rates. Bach and Villadsen (1984)
explored the application of a finite-¢lement scheme to the
unsteady problem of waves developing {rom initial perturbations
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Figure 1. Film thickness time trace.

on the smooth film for Reynolds numbers up to 100. Their work
predicted that the equilibrium condition would consist of waves
having one general shape, a condition contrary to experimental
fact even at film Reynolds numbers as low as 1. The film Rey-
nolds number is defined as Re = 4 Q/v, where @ is the mass flow
rate per unit perimeter, and v is the kinematic fluid viscosity.
Kheshgi and Scriven (1987) applied a finite-clement technique
to a problem with periodic boundary conditions in the fluw
direction, and verified the evolution of infinitesimal distur-
bances as predicted by Orr-Sommerfeld analyses. Their work
was limited to low flow rates, and failed to generate waveforms
camparable to those observed experimentally for fully developed
flow.

In the absence of analytical models for velocity profiles that
appear 1o represent reality, and due to the absence of suitable
experimental methods for measuring these profiles, a series of
numerical experiments were undertaken. Wave shapes, wall
shear stress profiles, and wave velocities were measured in our
laboratory for a film Reynolds number of 880, chosen to insure
significant inertial forces while remaining viscous in nature. A
novel method of solving free surface flows was developed, using
experimentally determined film thickness data for large, iso-
lated waves to solve for the position of the free interface. The
results of these computations demonstrate the complex depen-
dence of velocity distributions on wave shape, and represent an
early step toward realistic modeling of large waves.

Experimental Procedure
Fiow loop

For fully developed wavy film flow, film thickness and wall
shear stress data were collected in a 50.8 mm ID vertical test
section in a flow loop described by Zabaras et al. (1986). After
being pumped through a calibrated rotameter, the aqueous solu-
tion entered the column through an annulus whose inner wall
consists of a stainless steel porous sinter having 100 um pore
size. Combined with careful leveling of the column prior to data
collection, this entry section insured minimal deviations from
axisymmetric flow and produced a smooth inlet flow. The mea-
suring station was located 3.1 m below this entry section.

Measuring station and measurement techniques

The measuring station, shown in Figure 2, is patterned after
that described by Zabaras et al. The removable sectioa allows
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Figure 2. Measuring station.

simultaneous measurement of film thickness and wall shear
stress at one location and of thickness at another. The station
was constructed of the same material as the flow loop, and was
carefully machined to insure a smooth transition to the station.

Film thickness probes consisted of twin parallel platinum-
13% rhodium wires of 0.05 mm dia., spaced 2.5 mm apart,
which penetrated the flow. As described in detail by Brown et
al., (1978), a linear relation exists between the resistance of the
film between the wires and the film thickness. Calibration pro-
ceeded by setting the measuring station horizontal, blocking the
ends, and introducing different fluid levels, determined to within
10 um by using a cathetometer, followed by measurement of the
resulting resistance. Downstream electronics for converting this
resistance to a DC voltage signal are described elsewhere (Za-
baras et al.,, 1986). Conductance of the fluid was monitored
closety at all times during the calibration and data collection
procedures to insure proper correction of any thermatlly induced
conductance drift.

Wall shear stress measurements were based on the electro-
chemical mass transfer method described by Hanratty and
Campbell (1983). For the present series of measurements, the
iodine/tri-iodide system was chosen. The working solution con-
tained 0.1M KI and 0.004M I,(s) in demineralized water, and
was replaced every 2 h to minimize errors due to iodine evapora-
tion. A dry nitrogen atmosphere was used in the flow loop to
minimize oxygen saturation of the solution. Fluid properties a:
25°C are: density, 1,010 kg/m?; absolute viscosity, 8.50 x 10-*
kg/m - s; and surface tension, 7.12 x 10°? N/m. The cathode
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for this system consists of a flush-mounted strip of platinum foil,
0.075 mm (in the flow direction) by | mm wide, embedded in
Plexiglas to insure clectrical isolation. By measuring the current
produced by an clectrochemical reaction at the surface of the
cathode, the wall shear stress at that location is determined. For
the redox reaction

(cathode)
{anode)

I,” + 2e— 31
W =1, +2e

a concentration boundary layer develops on the cathode surface,
which is polarized at —~0.8 VDC to insure the concentration
approaches zero. For the iodine system, the range of polarization
voltage is quite broad, insu-ing that large increases in flow rate
will not deplete the electron source at the cathode. Details con-
cerning the downstream electronics and calibration associated
with this measurement technique are found elsewhere (Zabaras
et al., 1986).

It is now recognized (Mao and Hanratty, 1985) that the
response of the electrochemical probe is highly dependent on the
nature of the “input” wall shear stress. For the ijonic system
employed in this study, errors in both phase and magnitude are
expected to be small duc to the large (10° s~') mean velocity gra-
dient, small cathode surface area, and large Schmidt number
(v/ D) of the fluid (~780). The relationship given by Hanratty
and Campbell (1982) between cathode current and wall shear
stress was used in this study, as the frequencies in the data were
sufficiently low to allow the use of a quasi-steady analysis.

Data collection, processing, and analysis

Voltage signals from two film thickness probes and the wall
shear stress probe were first low-pass filtered at 1 kHz, then fed
to a microcomputer-based analog to digital (.2/D) converter.
Each signal was digitized at 1 kHz by a Data Translation 12 bit
A /D converter installed in a DEC Micro 11/73 microcomputer.
The data set comprised | min of data, and was stored on the sys-
tem Winchester disk prior to applying calibration curves and
writing the data to magnetic tape for further analys.s. Digitiza-
tion and collection errors are expected to be negligible for all
data, while calibration errors for the film thickness measure-
ment are expected to be less than 3%. Errors inherent in apply-
ing steady state wall shear stress calibration curves depend on
the nature of the input signal, requiring separate examination of
individual resuits. Zabaras (1985) reports estimated errors of
less than 7% for this technique.

Film thickness and wall shear stress data was examined to
locate isolated waves, defined by a wave having a peak to sub-
strate thickness ratio greater than 2, and surrounded by at least
one wavelength of reasonably flat film. For the sequences of raw
data, three representative waves of various dimensions were
chosen for computational domains. For each case, a nominal
wave velocity was determined from the time necessary for the
wave to travel from the upper 1o lower film thickness ~robes.

Numerical Method

Solution o[ frec-boundary problems requires methods for
uoth the solution of the governing momentum equations and
1 1pe determination. The velocity and pressure fields within the

wave thickness generally was less than 1% of the pipe radius,
and therefore a two-dimensional Cartesian coordinate system
was chosen. The transformation of time traces of film thickness
to this coordinate system comprised the shape determination
portion of the overall algorithm. The common method of com-
puting the position of a free interface, h(x), is to determine the
value of the film thickness, A, at given values of the streamwise
variable, x. ‘The present method inverts the process: for given,
measured values of &, we find the values of x that result in A{x)
satisfying all cf the [ree interface boundary conditions. To
insure accurate representation of the interfacial pressure, a
fourth-order-accurate, divided-differences scheme was used to
compule the curvature of the interface:

/(1 + hi)? H

Initially, the waves were modcied as though their shape
remained constant with time; these waves are termed “‘soiitary.”
The new streamwise coordinatce, z, is fixed on the wave, and
or.zinated at the front of the wave. The film thickness profile in
the time domain, A(t;), was converted to the length domain,
h{z,), through the transformation

2=z, + V (1 - 1) (2)

for i ranging from 1 to the number of film thickness points in the
isolated wave. In this manner, the wave profile was “stretched”
for use as a computational domain, and time was removed from
the problem. For this coordinate system, the wave remains fixed,
and the wall moves upw ird at a constant speed given by V, . the
wave velocity for the solitary wave.

It is useful to define a new streamwise velocity component,

u(z,y) ~ w'(x,p) + V,, 3)

where u’ (x, y) is the streamwise velocity in a coordinate system
fixed on the wall. The governing equations for this viscous,
incompressible, 2ud isothermal flow relative to the moving wave
become

uu, + vu, = —P [p + vAu + g 4
uv, + vv, = —P,[p + vAv 5)
u, +v,=0 (6)

where v is the velosity in the normal (y) direction, P is the pres-
sure, g represents gravitational acceleration, and v and p are the
kinematic viscosity and density of the fl: |d, respectively. At the
stress-free interface, y = A(z), tangential and normal stress bal-
ances require

(u, +v,) (1 = hi) - 2h(u, — ) =0 7
P=qh, /(1 + k1)
+ [2u/(0 + BD k- (u, + v)h, + 0] (8)

where  is the surface tension coefficient. At the wall, y = 0,

wave were .o ormined by solving the Navier-Stokes equations in
namitive s - e form. Fur a film Reynolds number of 880, the U=V, v =0, %)
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represent the standard no slip and no flux conditions. Veloctties
at the interface are related through the kincmatic condition in 2
moving frame,

v - uh,, y - h(z). (10)
The inlet velocity profile is parabolic, representing an accelera-
tion-free falling film, while © sufficient and physically consistent
outlet condition for a solitary wave recuires a zero streamwise
derivative for ail variables. The variable V, replaced A(z) as the
final variable to be iteratively determined in the free-surface
problem, and completes a now well-posed probiem.

For each wave profile, a unique, nonuniform finite-difference
grid mesh was constructed. The mesh for a typical domain is
shown in Figure 3. The particular wave shape determined the
grid spacing used. Mesh refinement continued until no further
change in cither the computed wave velocity or wall shear stress
profile was observed. Of particular importance was the ccnecen-
tration of cells near th- front and top of the wave, since the
velocity fields change drastically in this region due to the large
interfacial slope and curvature. For most waves, 1,200 cells of
dimension dxby were sufficient, and produced grid Reynolds
numbers [Reg;, = u(z, y) 8x/v, Reg, = v(z, y) dy/v] of order 1 in
the y direction, and ranging frrm 1 to 100 in the streamwise
direction.

The curved interface was accommodated by allowing boun-
dary cells 10 be ¢t by the boundary, #(z), thus reducing their
volume. This situation is illustrated in Figure 4. This technique
produced areas adjoining two boundary cells, the centers of
which were outside the computational domain. As the stress-
free interface requires a zero normal derivative of the velocity
vector with respect to the boundary, k(z), these regions were
treated as inviscid channels through which all fluid leaving one
boundary cell on its shared side passed into the neighboring ceil
through its respective shared side. The total area of these regions
represents less than 0.1% of the total domain, and had little
effect on the results.

The equation set was solved on a tinite-difference grid using a
variant of the TEACH-T code (Gosman et al., 1969), incorpo-
rating the SIMPLER pressure-continuity soiution procedure;
the principles of this method are described in detail elsewhere
{Patankar, 1980). The domain includes regions of significant
streamwise variation in all variables, thus necessitating an accu-

ied
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Figure 3. Samplae finite-difference grid.
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Figure 4. Interface finite-difference grid.

rate method of discretizing convective momentum terms. The
simplest method of convective discretization, upwind differenc-
ing insures a reasonably stable numerical solution, but intro-
duces numerical diffusion in regions of the flow where stream-
lines are oblique with respect to the grid lines {Raithby, 1976).
More importantly, the upwide scheme lacks sensitivity to cross-
stream diffusion and source terms (Leonard, 1979), which are of
trem¢ ~aous importance in the case of a thin film. This lack of
sensitivity diminishes the effects of the y direction diffusion as
well as the v velocity in the solution of the streamwise velocity.
These deticiencies in the upwind and hybrid methods require
the use of a QUICK -based sch~me, which improves accuracy by
cxpanding the number of neighbo. ing points included in interpo-
lated values of velocity,

Based on Leonard's (1979) third-order-accurate discretiza-
tion scheme QUICK, Pollard and Siu (1982) developed the
QUICK-ER (Extended and Revised) method of discretizing
convective terms. The QUICK-ER method overcomes stability
problems inherent in the QUICK procedure at the expense of
slower convergence, and is considered the most satisfactory
method of handling convec:ive momentum terms (Huang et al.,
1985). For application tc nonuniform grids, a new version of
QUICK-ER was developed. This method follows the spirit of
the QUICK-ER formulation, but includes locally variable
weighting factore to account for the nonuniformity of the grid in
both directions. .* hough QUICK-ER schemes requires more
computationai effort per iteration than upwinding, particularly
for nonuniform grids, improvements in accuracy ailow the use of
a slightly coarser grid, so total computational time exceeds that
required by the upwind method by only 20%.

The solution procedure began with choosing a vaiue for V,
and creating the transformed domain, given by Eq. 2. The u
velocity field was set to a parabolic profile everywhere, and the v
velocity ficld was set to zero. The pressure at each z location was
set to the surface pressure due to curvature. Updated velocity
and pressure fields within the wave were then computed using
Egs. 4, 5, and 6. Through interpolation for the velocity gradients
in the interfacial shear stress balance, Eq. 7, streamwise and
normal velocities in the interior of the flow field were used to
derive an expression for the streamwise surface velocity. Cou-
pled with the kinematic condition, Eq. 10, the velocities on the
surface were known for cach iteration. The surface pressure
computed from Eq. 8 was used to determine tac first pressure
value in the interior of the domain through the use of parabolic
interpolation using the surface pres-ure and two interior pres-
sures. With the newly computed surface variables, the velocity
and pressure fields were updated until the sum of residuals of
mass and momentum (normalized by the inlet quantities) over
the domain was less than 107 This condition also required the
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interfacial shear and normal stress balances to be within 10 * Pa
of zero, and thus, the governing equations and boundary condi-
tions were satisfied.

Upon convergence of the velocity and pressure fields, the
average pressure in the flat outlet section was examined. If the
average pressure did not approach zero, as required for a nonac-
celerating film surrounding a solitary wave, a new valuc of V,
was chosen and the process repeated. The adjustment procedure
for ¥, was simple: {{ the pressure in the outlet section was higher
than zero, the wave (wall) velocity was too high, since the wall
was pushing excess fluid through the wave, and a positive pres-
sure at the outlet was opposing this extra fluid in an attempt to
satisfy the mass balance for the wave.

Examination of the experimental data reveals that the large
waves do not remain precisely constant in shape. Incorporating
this unsteady effect is accomplished through the use of a locally
constant stretching parameter, as opposed to the globally con-
stant value used for the classical solitary wave. The domain
transformation for this case is given by:

Z,--ZD+V“.(I‘—-IO) (ll)

where z is the streamwise coordinate. In general, this pseudo-
wave velocity is

V= V. [1 = e(2)] (12)

where e(z,) is an iteratively determined local stretching vari-
able, and V,, represents the wave velocity associated with the
substrate. The solitary wave case is recovered by setting
e(z,) = O for all i. As before, we define a new streamwise veloc-
ity component as

u(z,y) = w'(x,y) + V(z,) (13)

which atlows the same governing equations and boundary condi-
tions, Eq. 4-10, to apply, The transformation, Eq. 12, introduces
a locally variable mass and momentum source due to the evolv-
ing nature of the wave, which does not appear in a solitary wave.
The solution procedure is identical to that of the purely solitary
wave. The solution procedure is identical to that of the purely
solitary wave, with the exception that now a profile of V,, must
be specified instead of a single value. When the velocity and
pressure ficlds have converged for a given set of V,, the wave
shape is adjusted through e(z,) to meet two criteria. The base-
line wave velocity, V,,, was adjusted such that the average pres-
sure in the flat outlet section approached zero, as before. The
computed wall shear stress profile was then compared to the
experimental profile, and adjustments made to e(z;) to correct
deviations. In this sense, the classical free-boundary problem is
recovered, albeit supplemented by experimental data.

The procedure developed for the solitary waves required an
average of 300 iterations of the velocity and pressure fields to
converge, with an underrelaxation factor of 0.5 used for all vari-
ables. Between four and cight adjustments to the solitary wave
velocity were required to produce a flow with an average outlet
pressure less than 102 Pa. For the quasi-unsteady case, the
same number of iterations was required to achieve convergence
of the velocity and pressure fields, while the adjustment of the
variable wave velacity to match wall shear stress data took any-
where from five to 20 iterations.
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Figure 5. Solitary wave streamline map, peak/substrate
=3.

The program was coded in FORTRAN 77, and required 2
MB of task space. Execution times {cr convergence of the veloc-
ity and pressure fields were approximately S CPU hona VAX
11-750 computer.

Resulits

Initial computations explored the validity of neglecting the
evolution of the wave shape. For a peak/substrate thickness
ratio of approximately 3, the resulting streamline map and wall
shear stress profile comparisons are shown in Figures 5 and 6.
The body force due to gravity, pgh, is presented to accommodate
comparison with the wall shear stress predicted by a parabolic
velocity profile. The shear stress comparison suggests that the
front and back of the wave are accurately described as moving
undeformed, but neglecting the evolution of the peak of the wave
causes discrepancies between computed and measured wall
shear stresses. Figure 7 shows superposed iraces of the film
thickness measured at Jocations 63 mm apart, and clearly illus-
trates the slight difference in speed between the front and back
of the wave as it moves down the tube, suggesting e(z,) > 0 in
this front region. In order to evaluate the effect of small changes
in velocity along the wave, the parameter e(z,), given by Eq. 12,
was varied by trial and the effect on the resulting wall shear
stress comparison noted. Figure 8 shows the very slight degrec of

10
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Shear stress, expervnenial
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Wall Shear Stress or pgh, Pa
*
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Figure 6. Solitary wave shear stress comparison, peak/
substrate ~3.
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Figure 7. Evolution of nearly solitary wave, peak/sub-
strate ~3.

variation in ¥, along the front of the wave, which resulted in
satisfactory agreement between measured and computed wall
shear stress data along the wave. To accomplish this match, the
wave velocity was increased gradually over the front of the wave,
reaching a maximum deviation of roughly 10% directly under
the peak. The effect of this variation on the streamlines and
shape of the domain is smail, but still significant, as seen in com-
paring Figure 9 with Figure 6. While the flow near the wall
appears quite sensitive to unsteady effects, global flow patterns
show only small sensitivity o these changes. These results
emphasize the importance of the interfacial shape in the compu-
tation of the flow field.

Streamline maps of two additional waves, having peak/sub-
strate thicknesses of approximately 4 and 5, arc presented in
Figures 10 and 11. Streamlines for these larger waves were less
affected by the transition from solitary to evolving waves than
the smaller wave. For these larger waves, the e(z,) factors were
slightly larger than in the previous wave, and the wall shear
stress comparisons were similarly favorable. These streamline
maps, in conjunction with Figure 9, suggest it is reasonable to
view the waves as jumps of fluid overrunning a slow moving sub-
strate. Note that for all three of these waves of different ampli-
tude, a well-defined recirculatory region appears when viewed in
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Figure 8. Shear stress comparison for evolving wave,

peak/substrate ~3.
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Figure 8. Streamiine map for svolving wave, peak/sub-
strate ~3.

a coordinate system fixed on the wave. Of importance is the
presence of large normal velocities near the front and rear of the
recirculating region. Previous modeling characte: red all nor-
mal velocities as small corrections to the dominant streamwise
flow, a supposition now seen to be inaccurate. These normal
velocities can be expected to enhance transport by refreshing the
surface with fluid from the substrate.

Surface velocity of the waves is nearly uniform over a large
portion of the wave peak, while varying rapidly . car the front.
Note the presence of stagnation points in fron. of and behind
each wave peak. While not physically important features of the
flow, these points correspond 1o zero curvature of the stream-
wise velocity, and are unrealizable for a parabolic velocity pro-
file.

Most previous modeling cflorts have regarded acceleration
within the wave as negligible compared to the gravitational
acceleration. In the Kapitza, or long-wave, analysis, the inertial
terms are neglected to produce 2 linear hydrodynamic problem,
which yields the streamwise velocity

u(z, y) = (g/») [yh(z) - y*/2] (14)

For this simple velocity profile, it is easily shown that the inertial
forces, normalized with respect to gravity, are

(udu/dz + vaufdy)/g = (g/v')y*h(z)/2(dh/dz) (15)
which has a maximum value at the interface, y = h(z), given
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Figure 10. Streamline map for evoiving wave, peak/sub-
strate ~4.
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Figure 11. Streamliine map for evolving wave, peak/sub-
strate ~5.

by
gh(2)*(dh/dz)/(2) (16)

Using the physical properties given previously, this quantity (for
Re ~ 880) becomes O (10) dh/dz. For the original lineariza-
tion of the problem to be valid, Eq. 16 suggests dh/dz siould be
less than O (10-%). The large waves discussed here have slopes
as great as 0.07, in which case inertial forces are predicted to
dominate gravity, and the original premise is violated. Further
comparison of the computed inertial forces and the long wave
predictions, Eqs. 15-16, must be limited to the location of
extrema and existence of inertial forces when the interfacial
slope is small.

As seen in the streamline maps, large accelerations exist near
the surface, particularly near the front and rear of the recircu-
lating region. For the wave having a peak/substrate thickness
ratio of roughly 3 (a ratio commonly seen in experimental data),
consider the three locations shown in Figure 12. Near the front
of the wave, maximum normalized inertial forces (convective
momentum terms/gravity), shown in Figure 13, are several
times greater than gravity. Beneath the wave peak, roughly 25%
of the flow is free of acceleration, a stagnant lump riding on the
substrate. In this region, the interfacial slope is nearly zero, for
which Eq. 16 predicts no acceleration whatsoever. However, the
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Figure 12. Location of accelersation and velocity fit exam-
ples, peak/substrate ~3.
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substrate bencath the peak shows moderate deceleration, with
the maximum occurring far from the interface, contradicting
Eq. 185, which requires the maximum inertial force to exist at the
frec interface. Further toward the back of the wave, the acceler-
ation is again maximum at the surface, showing a deceleration
of the order of gravity, while Eq. 16 predicts a maximum accel-
eration of the order of 10~ g for this nearly flat region. These
variations in acceleration in the streamwise direction support
the premise of large waves pushing material from the surface to
the substrate, exchanging cither heat or mass, and thereby
enhancing transport properties.

Acceleration effects are further illustrated in Figure 14; a
particle on a surface streamline would undergo greater changes
in acceleration than one near the wall. The process of transport
enhancement is again clearly shown, as particles in front of the
peak accelerate toward the mass of stagnant fuid, exchanging
heat or mass, and then are forced to return to the substrate.

To examine the suitability of various polynomial representa-
tions of the streamwise velocity profile, data from the numerical
experiment were compared to the velocity profile predicted by
Kapitza analysis,

u(z, y) = 2ulz,y = k@] {y/h2) - L Iy/KDP] (A7)

where the surface velocity was taken from the numerical experi-
ment. In addition, the computed velocity profile was fit with a
least-squares cubic polynomial in y. For illustrative purposes,
consider the streamwise locations within the wave shown in Fig-
ure 12. Near the frout and beneath the peak, the parabolic fits
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Figure 14. Fluid particle acceleration, peak/substrate
~3.
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shown in Figures 15a and 15b show significant deviations from
the computed velocities, while the cubic polynomial appears to
faithfully represent the profile. Use of the cubic polynomial
allows the curve to fit the velocity gradient at the wall as well as
the surface and wall velocity accommodated by the parabolic fit.
This extra degree of freedom enables a nearly perfect fit of the
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Figure 15. Curve fits of velocity profiles, peak/substrate
~3.
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data, and represents the physically desirable property of match-
ing wall shear stress as well as surface velocity. Near the back of
the wave, where the shear stress suggests the flow has small
acceleration forces, the cubic and parabolic fits are shown in
Figure 15c to coincide more closely than at other locations.

In the cases of both solitary and evolving waves, the wave
velocity V, was computed by choosing V., such that the average
outlet pressure was close to zero. The dependence of average
outlet pressure on the wave velocity is shown in Figure 16 for the
solitary wave with a peak/substrate ratio of approximately
three. This nearly linear dependence allowed quick convergence
to ¥,. For cach wave, the substrate or base wave velocity ¥, was
compared to that determined by dividing the length between the
upper and lower film thickness probes by the passage time of the
wave peak. In cases where the wave traveled between the probes
with only slight deformation, this comparison showed the com-
puted values to be within ronghiy 10% of the experimental ones.
For those waves evolving rapidly, this crude comparison pro-
duced less favorable results, with errors as high as 30% for the
wave and peak/substrate of approximately 5.

Figure 17 shows the values of non-dimensional wave velocity
determined by simulating flow in various solitary waves at dif-
ferent flow rates. The hydrodynamic character of these waves
was similar to those presented in detaii: of primary interest was
the 1ack of correlation of wave velocity to peak/substrate thick-
ness, in agreement with the experimental findings of Zabaras
(1985).

Conclusions

The interface of a falling liquid film consists of a random
array of waves of varying amplitude, length, and velocity, some
isolated and some overlapping. Even at moderate Reynolds
numbers, these waves display amplitudes that are two to five
times the substrate thickness. Three typical isolated waves
obtained from measurements of the time traces of the film thick-
ness were selected as computational domains. A method was
developed to solve the Navier-Stokes equations for this free-sur-
face problem which yields both velocity and pressure fields in
the wave and wave velocity. The measured wall shear stresses
and wave velocities were in reasonable agrcement with those
determined from the numerical solutions. The results of these
computations confirm certain earlier speculations on the me-
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chanics of wavy film flow and point to the inadequacies of oth-
ers.

The large wave moves rapidly over a slow substrate, the bulk
of the liquid being carried in the wave; this liquid is nearly sta-
tionary in a coordinate system moving with the wave. The inter-
action between the wave and substrate causes the acceleration of
fluid at the front of the wave from the substrate in the peak. The
fluid then decelerates as it passes out the wave back, generating
a close recirculation region in the wave whose size depends on
the wave amplitude. This process of recirculation would appear
to account for the enhanced rates of heat and mass transfer
known to exist in wavy films. This picture of the waves is in
rough accord with the speculations of Dukler (1977).

The presence of secondary flows can be expected to enhance
rates of interfacial mass transfer. Levich (1962) showed that
velocitics normal to wall as small as 1% of the streamwise veloc-
ity produces a 15% increase in the rate of mass transfer to the
interface. As the present work shows that normal velocities may
be ten times this large, we expect substantial enhancement.

Most previous studies of wavy film flows, starting with the
classical work of Kapitza (1964), are based on the parabolic
streamwise velocity profile, which is presumed to exist at all
positions along the wave. This numerical experiment points to
the inadequacy of that assumption for these large waves, and
shows that a cubic profile faithfully reproduces the streamwise
velocity gradient at all axial locations. Attempts to develop evo-
Jutionary equations for this flow should use the higher order
velocity profile to insure that the accelerations which exist can
be incorporated into the model.

Most theoretical models have shown that the wave velocity
and amplitude are uniquely related. Careful measurements by
Zabaras (1985) show that the wave amplitude varies widely
with both amplitude and wave length. These numerical studies
show that for a given amplitude, the computed wave velocity is
sensitive to relatively small changes in wave shape, rationalizing
the experimental observations and raising questions as to the
usefulness of some of the simpler models.

The use of a single wavelength as a scaling parameter for the
streamwise hydrodynamics is shown to be incorrect. The present
computations show that strong differences in accelerations exist
at various positions along the wave. Each of these domains
should be analyzed scparately if integral equations are to be
used, as suggested by Maron et al. (1985). The use of evolution-
ary equations can eliminate this problem.
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Notation

D = liquid -liquid diffusion coefficient, m’/s

£ - acceleration of gravily, m/s’

P - pressure, N/m?

Q - liquid film Aow rate per unit perimeter, m/s
Re = film Reynolds number, 4Q/»
S¢ = Schmidt sumber, »/D

« = local streamwise velocity, m/s

v - local velocity normal to boundary, m/s
V. = solitary wave velocity, m/s

x = axial coordinate in lab frame, m

y = coordinate normal to boundary, m

z = coordinate fixed on wave, m

p = liquid density, kg/m’

» = liquid kinematic viscosity, m*/s

4 = Laplacian operator, 8/9x* + &/8y°
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Phase Plane and Bifurcation Analysis of Thin

Wavy Films under Shear

A long-wave equation for film thickness as a function of position is
derived for a general case incorporating viscous, surface tension, and
interfacial shear effects. The derivation considers both the parabolic
and the power-law velocity profiles. The analysis is aimed at revealing
the wave velacity that induces infinitely tong (homoclinic) periods as
well as substrate thickness and wave peak amplitude. Phase piane
analysis shows that at Re » 1, due to time-scale separation, the homo-
clinic velocity is near that at the Hopf bifurcation. That enables analyti-
cal derivation of the wave characteristics.

Comparison with experimentatl results in the range of Re-310-3,100
with countercurrent gas flow, shows encouraging agreement. At very
high Re the wave velocity suggests the onset of turbulence, in agree-
ment with theary. Phase plane analysis predicts aiso that the wave
shape consists of a simple peak with a steep front, with short waves

M. Sheintuch, A. E. Dukler
Chemical Engineering Department
University of Houston

Houston, TX 77204

riding on the main wave at low Re.

Introduction

The prediction of wave characteristics of falling liquid films
has been the subject of numerous investigations (Dukler, 1977).
Most studies have focused on free-falling films at low Reynolds
number (Kapitza and Kapitza, 1949; Alckseenko et al., 1985)
and have used linear stability analysis to determine the range of
unstable wave velocities and the mode of the fastest growing
wave. The film is assumed to be sinusoidal, oscillating about its
mean value or even somewhat perturbed from a sinusoidal
shape. This type of analysis predicts the wavelength and velocity
at the conditions of wave inception. The long-wave approxima-
tion (Benney, 1966) considers the limit of very long and shallow
waves that reach constant shape in the frame of a moving coor-
dinate. Again, the wave evolves from the mean film thickness.
Recent nonlinear analysis searched for wave velocities that
induce infinitely long periodic solutions (homoclinic orbits).
These studies were limited to falling films at low Reynolds num-
bers (Pumir et al., 1983) or used a questionable approximation
for the flow condition (Needham and Mcrkin, 1984). Anather
approach, applied at high Re, is to approximate the wave shape
by assuming a sequence of characteristic velocity profiles at dif-
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ferent locations along the wave (Maron et al., 1985). Finally,
numerical solutions of the evolution equation (Bach and Villad-
sen, 1984) did show the existence of constant-shape solitary
waves. Even at Reynolds number of order 10 such computations
are highly time consuming, and problems of numerical instabil-
ity are encountered.

The purpose of this analysis is to present asymptotic solutions
for wave velocities as well as certain dimensional characteristics
of falling liquid films experiencing interfacial shear induced by
gas flow. For this purposec methods of nonlinear analysis are
used. Experiments have shown that at positions well below the
plane of wave inception, two classes of waves exist on the surface
(Dukler, 1977). Large waves can be observed riding on a thin
substrate, with the ratio of peak wave height to substrate thick-
ness ranging from 2 to 4. A second class of waves that are capil-
lary in nature and of much smalier amplitude than the first is
also present. These ride on the substrate and are sometimes seen
on the trailing edge of the large waves. In the presence of gas
flow paraliel to the mean surface, interfacial shear is generated
and the wave structure changes but the two wave class structure
can still be seen. At sufficiently high ccuntercurrent gas flow
rates a condition of flooding can be reached where part of the
liquid introduced on the vertical surface flows upward.

For complex problems such as this one, two rather divergent
approaches are available. At low Reynolds «-:mbers an analyti-
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cal method is possibic in the vicinity of certain singular points
that can be shown to exist (Chang, 1986}. For high Re a dif-
ferem approach is possibie if it can be shown that the system is
characterized by two or more widely diifferent time scales. This
paper takes the latter avenue, which has been largely unex-
plored. First we derive the integral momentum equation for the
film under conditions of constant interfacial shcar along the
wave. Surface tension effccts are incorporated and we assume
alternatively a parabolic (laminar) or a power law (turbulent)
profile. A complete analysis of the parabolic profile case is
developed including interfacial shear while for turbulent flow
the solution is explored only for free-falling films in the absence
of gas flow.

The analysis strategy is then outlined and this is followed by
the development of the solution to the flow equations for the two
profiles, neglecting surface tension. For the parabolic profile it is
shown that the shear makes no qualitative changes in the behav-
ior of the system, having only a quantitative cffect on the inter-
facial characteristics. As long as flooding is not induced the
results are similar 1o those of the free-falling case. This same
conclusion was reached by Zabaras and Dukler (1988) based on
experimental observations. Turbulent flow may significantly re-
duce the wave velocity to a value approaching the mean liquid
film velocity. Then the role of surface tension is explored. In the
absence of surface tension an ordinary differential equation of
the second order is generated and it is shown that the smooth
film (Nusselt) solution cannot be a saddle point. When surface
tension is added, a third-order ordinary differential equation is
generated and every solution may be the saddle point and thus
can be the source of the homoclinic orbit. The analysis of this
complete form of the problem reveals that capillary waves can
exist along the wave and substrate where the profile is flat, in
addition to the large, long waves characterized by the homo-
clinic orbit; this too is in accord with experiment.

Finally, we compare the results with experiments of Zabaras
and Dukler (1988).

The Film Equation

The Navier-Stokes equations are integrated in the direction y
perpendicular to the wall, using both parabolic and power-law
velocity profiles. The work may be extended to higher polyno-
mial velocity profiles by numerical methods. We then apply a
moving coordinate frame and arrive at one third-order equation
for the film thickness.

Parabolic laminar profile

The film flowing downward under interfacial shear, 7, is
described by
1
u,+uu,+vu,-;(—l’,) + g + v(u,, + uy) 1
U, +v,=90 (2)
subject to
u=v=0 at y=0 (3)
u, =7/, V=h +uh, P=Py—oh, at y=h (4)
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With integration in the y dircction, Eq. | yields
a a oh
4+ — rdy - gh 4 —k

o ax_/o‘u) gk 4 = F

A T

+v u,dy + - — w0} (5
{.[ y “ y

with the local flow rate

Q-fo'udy (6)

Assume a quadratic velocity profile that satisfies the conditions,
u=0aty=0;,r/u=dufdyaty = h;and Q(h) = j;. u dy. This
yields the following distribution function

3 ; 3
u-g—n(Z-")+Iiﬁn('n—l) (M

h2 w2 \2

with n = y/h. Clearly, this equation also describes the distribu-
tion in the undisturbed film (steady state) as well. With this dis-
tribution the following integrals can be evaluated.

L 6Q2
dy =22
-["" sat

Ork | B
120 \u

08 (8)
From Egq. 6 the second x derivative of Q can be evaluated.
Que = Mt () + by (k) + () + [ unsdy (9)
dx [}

For the parabolic profile the last integral can then be evalu-
ated.

ol 30w
\hh, W 2

Substituting these quantities into Eq. 5 gives the following equa-
tion for the case of constant shear independent of x.

1 hr, 6 0*
+3% “)+h,(—5h, +

1dpP Y 30 31\ oah
-(g~pdx)h+”(-£ undy——’;,-+2“)+7hw Qan

on ﬁ’.n’)

200 202

Qw(&(%%

with _/;‘ u,. dy defined in Eq. 10. The integral of the continuity
equation is
Q.+ h =0 (12)

Thus Eqgs. 11 and 12 are two equations in A and @ as dynamic
variables and x and 1 as independent variables. In a coordinate
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frame moving with the wave velocity, ¢, set

A=t, t=x—ct (13)
and the mass conservation condition then becomes

he—chy + Q=0 (14)

The momentum balance, Eq. 11, can be modified by substitut-
ing Qy ~ cQ; for @, and 3"/3¢" for 8"/dx". We make now two
important assumptions:

1. The waves propagate without change in shape; thus in a
moving coordinate system, @, - h, = 0. Integration of Eq. 14
yields

Q-ch=K 1s)

where @ is the volumetric flow rate at any location £ along the
wave,

2. The integration constant, K should satisfy the steady state
solution with # = k, and Q = O, the liquid feed rate. Thus K ~
Qr — ch, By integrating the velocity distribution over the
steady state film thickness we find that

3
0-22 0+ 1) 16)
14

with the dimensionless shear T = 3r,/2pgh,. Note that Eq. 16
may have more than one real solution for &, given Qr and 7,, as
discussed in detail by Maron and Dukler (1984). Substituting K
calculated from the steady state solution, Eq. 15 becomes

3
g;:a(l-#-T)[l-l»n(H——l)], H-l. n-i’ a”n

Q - ho QF

where n is the wave velocity made dimensionless in respect to the
average velocity. Substitution of Eq. 17 into the momentum bal-
ance, Eq. 11, yields an ordinary third-order differential equation
describing the change of dimensionless film thickness, H, with
dimensionless length [ = £/L. The length scale, L, and dimen-
sionless parameters are defined as

hoRe QF o
e R Ve

1+ 7 v (1%)

The resulting equation is

«H’Hy + &[C(H)H, — C;(H)H7]
+ {1 + TYXC(H)H, + C(H) =0 (19)

where

2TW(1 + T)' 27(L + T)
'—'—"‘-"‘—"‘Re”” “"‘*“ an €y - ——-——R—e—z———

€ -
In thix development the dimensionless shear stress 7, is assumed
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10 be independent of the position along the wave [ and the cocffi-
cients are:

Co=(H -~ DH? = (T + 1 Xn — H ~ 1)]

C - —”—Z(H— ng“}l)(ﬂ«f V6o ])

5 n
TH! 2
—— [ —
10(I+T)(2"H+ "+I+T)
3 nH | HT
C"‘”[’i"’“”’?‘ix_??}
HT
C, - - 1) - (20)
323 -0 -7

These equations apply for downflow of liquid with counter-
current gas flow (g > 0,7, < 0, —1 = T =< 0) or cocurrent flow
(g>0,7,>0, T > 0) as well as for upflow where x or ! is positive
in the flow direction (g < 0, 7, > 0, T < - 1); the inequality,
T < -1, follows from the requirement that Q, be positive in Eq.
16.

A schematic representation of the relation between T and A,
as deduced from Eq. 16 appears in Figure 1 for constant Qf.
Downflow with countercurrent shear takes placefor -1 < T <0
(band B in the figure). However in the range —% < 7 < 0 the
velocities are directed uniformly downward at all locations in
the film. For T = — 3, the profile is symmetric, with zero velocity
at the interface, and when —1 < T < —3¥,, downward-directed
velocities exist near the wall, with upward velocities near the
interface. Band A in Figure 1 represents concurrent downward
flow while band C displays the behavior for concurrent upward
flow. In these bands, for the range —1.5 < T < - 1, the velocity
profile is again not monotonic. For more negative values of T
uniformly upward flow exists in the film. A1 T = —1.5 the wall
shear is zero and the upward motion of the liquid is driven by the
interfacial shear only. The existence of these different patterns
of velocity distribution was discussed by Maron and Dukler
{1984) and their existence confirmed experimentally by Zaba-
ras et al. (1986).

-1.0

LAY
o \
-15 | ol' C
0

-20 9

Figure 1. Solutions to steady state film thickness equa-
tion.
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Turbulent profile in the absence of shear

For turbulent flow, the film velocity profile can be expressed
in a power law form:

1 4+
u-( +a)%n”a

21
We find

2 1
fauzdy_(l+a) Q
o

a2 +a) h -{"d""Q @

The integral momentum equation then becomes:

;. (1 +a) QQch - Q) T
h;(—c +a(2+a) W -gh — p

I
+ vhy (c ¢ : @) %) + 0D (23)

Q- ch=0, - ch, (24)

For turbulent flow the wall shear stress r,, cannot be approxi-
mated from the velocity profile and correlations are needed. As
shown below, this has no influence on the dimensionless wave
velocity but does change the mean film thickness and conse-
quently the dimensional velocity. From the Blasius relation

Te Yty A _ @

S 2 SR -= 2

p 2 “ 8 “ h 25)
where the friction factor at the wall, A, is estimated from single-
phase flow models.

% = 0.056(Q/v)"* (26)

When this relation is substituted into Eq. 24 for the flat film, we
find

howr 0.21 Re'/* 2n
oflam)

In the application of Eq. 23 at high flow rates the value of o
can be expected to vary along the wave. At the substrate the
focal flow rate is low, turbulence is suppressed, and the qua-
dratic law will apply. In the thicker portions of the wave near the
crest, turbulent behavior will result in increased values of a.
Methods for accounting for this flow direction variation in «
have not yet been fully implemented. As a first approximation
we use 3 constant value of a for the dynamic analysis of the
momentum equation.

Strategy of Dynamic Analysis

The dynamic equation for the film thickness, Eq. 19, contains
four parameters, Re, W, n, and T, which are to be specified as
input variables. Even though the slopes of the waves are known
10 be small it is not possible to simplify the equation by neglect-
ing the H, and H,, terms since these quantities are necessary to
the stability and dynamic analysis that follows. Define the fol-
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lowing dimensionless term

3,50
;‘?_(_2([_{'[‘}2_(_**:_&&;_ (28)

€ W

When B is large the incrtial forces are large compared 10 the sur-
face forces and the first term in Eq. 19 can be neglected.

The steady state solution of Eq. 19 is the space-independent
(H; = Hy « Hy = 0) solution of Co(H) = 0. The qualitative
naturc of these solutions is shown in Figure 2 for different
ranges of T. The unperturbed film (4 = 1) is always a solution
but there is always a range of velocities n for which it is not sta-
ble. The other twa solutions, for any 7, form a parabalic branch
a~HY(l + T) + (1 + H) whichintersects H = Latn = (3 +
2T)/(1 + T)and acquires a turning pointat H = —(1 + T)/2,
n = (3 - T)/4. The parabolas for upflow, Figure 2a, and down-
flow, Figure 2b, open in opposite directions. The range of values
of nover which the H = 1 solution is unstable can be determined
from linear stability analysis. Specifically, there will usually
exist a (Hopf) bifurcation point, which is the value of n at which
a transition to periodic behavior takes place and oscillations are
observed in the frame of a moving coordinate; that is, waves
propagate along the film in the physical system. The H-n dia-
gram for 7 = 0 showing the nature of the various states as deter-
mined by linear stability analysis is shown in Figure 3. As the
waves grow, their velocities vary in the direction of lower n
(more unstable). The waves form a family of closed curves (limit
cycles) in the phase plane (H, vs. H) or phase space (H, H,, H)
and these closed curves increase in area as the waves grow in
amplitude along the film in the coordinate direction. These
waves have a peak such that H > 1 and a substrate thickness
H < 1. As the wave grows the substrate becomes smaller. At the
condition where the substrate thickness is equal to that of the
saddle point the wave can grow no more and its velocity will not
change. In the phase plane the largest possible wave will be
formed when the limit cycle hits a saddle point forming a homo-
clinic curve. This curve provides the asymptotic amplitude of the
wave and the corresponding velocity, n,. Further change in n
cannot take place since this results in the elimination of the
oscillations. The wavelength of this form is infinite since the
motion takes place in the vicinity of the saddle point, which is 2
steady state, and thus is infinitely long. The saddie point satis-
fies the steady state solution Co(H,) - 0.

The purpose of the nonlinear analysis is to determine the loca-
tion, n,, and form of the homoclinic curve (also termed saddie-
loop bifurcation). That is possible analytically only in two
cases:

1. In the small neighborhood of higher order singularitics
such as when Hopf and saddle-node bifurcations coalesce. Then

? {a) ) ()
Hel /
M=

o /
141

-~r T>-1 ~1>T >3 -3>¥

i

.
-7 i n
ol ¥ n

Figure 2. Variation of steady state film thickness with n.

s. Downflow; b, c. Upflow
Coordinates far fimit points in (b) and (c) same as in (a)
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Figure 3. Changes in the nature of the steady states.
Determined from linear stability analysis for 77 = 0 and negligible
surface forces

an=mibnan<ny,
cnen—~hyodn>n,

the oscillations are infinitesimally small and can be described by
perturbation of the linear solution.

2. When the system is characterized by different time
scales.

We capitalize here on the latter property.

The dynamic analysis of Eq. 19 requires working in the three-
dimensional phase space, H, H, H,. However many of the es-
sential dynamic features of the system can be discerned by
analyzing the phase plane H, H, Equation 19 reduces to this
problem for high Reynolds numbers when 8 — . Thus the pro-
cedure will be to first analyze the simplified system in the phase
plane for both laminar and turbulent flow. Then the analysis
will be generalized for cases where 8 is not large.

Laminar Film Flow for § —
In the case W = 0, Eq. 19 can be written in the form

Hymw 29)
szzW, - —(] + T)2C|W — Co + szJ‘Vz -I(H. W) (30)

Linear stability analysis requires the determination of the eigen-
values of the Jacobian matrix d(w, f/e,C,)/0(H, w) at the
steady state H = 1, w = 0. The matrix is then

0 1
I-\h L @y
€2C2 (zc

and the state may destabilize by one of two ways:
1. A Hopf bifurcation to periodic behavior occurs at

2
v o QFTYGH) >0 (32

The state is unstable for C,(1)/C(1) < 0, or from Eq. 20 with
T=0,

-§-<n<§+?-n” (33)
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2. Exchange of stability from H# ~ | to the # # 1 solution
occurs when

. 4G
IJ'__——-- —O. COH(I)-dH(l) (34)

yielding n = 3 when T = 0, that is, at the intersection point of the
two branches. These transitions are observed in Figure 3 where
the unstable branches are marked by brokea lines.

Oscillations (waves) exist for a certain range of n as shown in
Eq. 33. We show now that when ¢; = 27 (1 + T)’/Re’ — 0 the
wave velocity at the homoclinic orbit is very close to that at the
Hopf (n, — n,). Note that ¢, does not affect the stability bound-
aries, Eq. 32, but it affects the behavior in the phase plane. From
Eq. 30, with 7 = 0 and when the smalt ,C,w? term is ignored,
the direction of the motion (slope in the H — H, piane) is

2

" "g (H — H)H + H)w - (H — \)(H — H))(H - H))

dH

ezwﬁg (-H + H)

S(H,w)

“ G Y

where H,; are the roots of Co(H) = 0 with H, and H defined
from Eq. 20 after setting T = 0.

HZJ - ~0.5« vn - 0.75

n—1

H“‘Jg

3(n—-1)
T n

H; (36)

Since ¢, is small, dw/dH — « everywhere in the phase plane
except when the numerator vanishes. At this condition of f = O

o (H = D(H = H)(H — H)

n
?(H - H)H + HY)

€0)

The shape of the w vs. H curves resulting from this expression
are dependent on the velocity, n, since H,_¢ are functions of n.
Figure 4a shows the solution of Eq. 37 at n = n,; = 1.689, Eq. 33.
H =1 is one branch of the solution for all wsince H, = 1 at n =
ny. The second branch crosses this H - 1 branch and intersects
the abscissa at H,. We have already shown that for any point in
the phase plane the trajectory must be vertical except near the
f = 0 curves. Thus all trajectories starting at H < 1 flow toward
the second branch except for those that originate in the immedi-
ate vicinity of the H = 1 line. Along the curves the trajectory
must be horizontal, As the f = 0 lines are approached the trajec-
tory must move along the f - 0 curve and increasingly close to it
in direction. This direction is indicated in the usual way by
heavy arrows on the solution branches. The sign of w; is an indi-
cator of the direction of the vertical trajectories. As seen in Eq.
30, this direction changes as f(H, w) passes through zero. Simi-
larly, the sign of H,is an indicator of the direction of horizontal
motion. Eq. 29 shows that this direction changes as w passes
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Figure 4. Phase-plane analysis of two-variable model.
Heavy lines, f = 0: thin lines, direction of motion

an<aLbny<n<a,
crwnforRe-—+=;dnen,

:hrough zero. Equation 35 shows that trajectories cannot cross
the H = H, boundary since at this point C,(H) = 0 and a discon-
tinuous change in the direction of motion occurs. When this
pegins to happen the surface tension terms neglected here
oecome important. Thus waves that initiate from the smooth
film cannot achieve an amplitude greater than Hs.

Solutions of Eq. 37 for n < n,, and n > n, appear in Figures 4b
1nd 4d. In the latter case the steady state, H ~ 1, is stable and all
trajectories in its vicinity are attracted there. For n < ny in Fig-
ure 4b, the steady state at H = 1 is unstable and all trajectories
scape to infinity. Of particular interest is the case where n —
14, illustrated in Figure 4¢. The Hopf theorem indicates that a
limit cycle surrounds the unstable state, H ~ 1, near the condi-
*ion for a Hopf bifurcation. Thus the situation appears as shown
n Figure 4c for n somewhat less than n,,. Periodic oscillations
~ind out in a spiral from its origin at H - 1 and gradually grow
in amplitude until they disappear in a homoclinic orbit at H,.

Now it is possible to deduce that the value of n, at which this
akes place must be negligibly different from n, when ¢, is small.
Under these conditions the trajectories are almost vertical, and
the limit cycle must be narrow in the H direction and long in the
v direction. If the two branches of the f = 0 curve are far apart,
1s they are when n is significantly lower than ny, the trajectories
can readily escape to infinity. As ¢ increases, the trajectories
continue to flow toward the left branch of the f = 0 curve but
10w they can travel a short distance, ¢,, away from these curves.
The separation distance between the two f = 0 curves increases
as n, — ny. Thus for the trajectory to move from H = 1 on one
“ranch of £ = 0 to H, on the other requires that n, — a1, be of the
wder of ¢,, a small number under the experimental conditions of
interest here. Thus we conclude that n, = n,,.

Pictures of the developing waves can be arrived at by ana-

yzing the trajectory in the phasc plane, as shown in Figure 5.
The initially flat interface (a) displays small sinusoidal waves at
the point of wave inception (b) with the wave velocity, st = ny; =
1.689, Eq. 33, at this condition. But the condition is unstable and
he spiral unwinds around H = 1 to become a homoclinic orbit at
1 = n, in close proximity to n,. In its homoclinic orbit the mini-
mum or substrate wave amplitude is H, = 0.47 (Eq. 36 for n -
‘1y). H then increases rapidly at the front of the wave with high

182 February 1989 Vol. 35, No. 2

s
]
<
d

___.x

Figure 5. Qualitative sketch of wave profile.

slope, w. As it approaches its peak amplitude the slope drops to
ze;0. The peak cannot exceed Hs = 1.25. Then the sign of the
slope changes and along the back the wave tapers more slowly
down to the substrate thickness, H,.

The existence of countercurrent shear does not change this
qualitative picture, modifying only the wave characteristics.
Steady states are linearly unstable when C,(1)/Cy(1) <O or

3 s 6 s 6 225 4157
Zy= - — o — - = 8
(2+2)<n<n,, st SV "33t oe (3%)

where s = T/(1 + T'). The upper root of C,(1) = Q is ny, and this
1s the solution of

n n - 1\ s
—?{1—6( . )]-E(l-bn-{-s)-o (39)

The other stability boundary, J = 0, occursat n = 3 — 5. A map
of the linear stability appears in Figure 6 for downflow with
countercurrent (s < 0) or cocurrent (s > 0) shear. The relative
positions of the threec boundaries are identical to those for the
frec-falling film problem. They intersect at s = 1, n = 2, which
does not correspond to any physical situation (T — +=). For
upward flow (T < — 1, s > 1) the relative positions of the three

Stadle Unstabte
Uptiow Node
1
Cocureent Unatable
Oowntiow /\S-am
~
-
ro
-:' Counter /
- Current
1 Down Coult)=o
o 4 Flow am3-3
Smooth Film
Sistie
-2k
€,{n=0 c, (11 =0
€3 s o)
N '3 ‘\-"“
-3 . i A
1 2 3

Figure 6. Stabllity map tor smooth film in the presence of
shear tor two-variable case.
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bifurcations are interchanged. The phase plane analysis for
downflow with countercurrent shear is analogous to the 7 = 0
case. At n = n,, H = 1 is a solution for any wand the f = O curve
acquires the shape of Figure 4a. Changing # modifies the dia-
gram in a similar fashion and we conclude again that a homo-
clinic orbit must exist close to n,, with the same general shape as
in Figure 5. The substrate height, H,, and the limiting wave
amplitude, H,, are given by

_ =L+ T +4(r, - DU - 9)
2(1 —3)

—l14+ Vi +12n—1

Hy- = (40)

H,

This analysis shows the following behavior of the system for
dowrfiow with countercurrent shear

1. The wave characteristics depend on the shear parameter,
T (or 5)

2. The wave velocity, n, which approximates the velocity at
the Hopf bifurcation, varies weakly with T (or s), taking on val-
uesof 1.69at T =0(5=0),1.5at T~ ~}h(s= —1),and 1.75at
T=—%(s=-3)

3. The maximum wave amplitude increases markedly with
countercurrent shear since H; increases as s becomes more neg-
ative )

Extension of the analysis to upflow shows that the relative
positions of the bifurcation points, Figures 2, 6, are arranged in
a mirror image to the downflow case and the conclusions are
thus similar for cocurrent flow. However the existence of multi-
ple values of the equilibrium film thickness for any shear stress
and flow rate as discussed above raises these additional issues:

1. Either one or both of these solutions may not be stable

2. The location of the turning point at# = (3 — 7')/4 may be
outside the domain where oscillations can exist

Turbulent Film Flow

The analysis of Eq. 19 for laminar film flow presented above
showed that C,(H = 1) « 0 is a necessary condition for instabil-
ity (see also Figure 6). Note that C, is the coefficient of H,, the
slope of the wave in dimensionless form, and H = 1 is the condi-
tion for the smooth film, 4 = k,, @ = Q. For turbulent flow the
same condition can be shown to exist. Thus, the coefficient of the
dimensional slope, A, in Eq. 23 must be zero, resulting in the
following relation for the dimensioniess wave velocity.

2
2 (n — fa) =0 fla) = a%%% @41
or
n=fla) + FT=D (42)

This result is independent of the particular form of the correla-
tion used for the wall stress. At high flow rates, as the flow
becomes more turbulent « increases and n approaches 1.0. Thus
for a velocity distribution that follows a '4th power law, n -
1.14. It should be noted that such low values of the wave velocity
cannot be predicted from any laminar distribution but have been
observed experimentally for high flow rates, Eq. 12.
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Laminar Films with Surface Forces: Genara! Case

When surface tension effects are retained in the model a gen-
eral form of Eq. 19 can be written as follows where w = £, and
¢ = wg

f(Hv W) - ‘ICZ¢ - g(”- W,¢)
oH’ oH’

&~ (43)

where w = H,and ¢ - w,and f(H, w) is defined in Eq. 30. The
Jacobian matrixat H = 1|, w = ¢ = 0 is:

0 1 0
J- 0 0 1 (43)
_Cul) Gl g
€ € €

The characteristic equation, |J — Y2 | =0,is

2 2
L z-c,(m\2 Larma, C"':m
i {

&

=0 (45)

and its roots are the eigenvalues that determine the stability.
Applying Routh-Hurwitz stability criteria reveals that H = 1 is
stable (A, Ay, A; < 0) if the following three conditions are satis-
fied

(@) Cau1) >0
() C(1) >0

C(l) (L + TYCMG()e -

46
©) o 3 0 (46)

Condition (a) is the exchange of stability, described earlier, and
it implies n < 3 — 5. Condition (b) is also unchanged, requiring
n> (3 + s)/2. Hopf bifurcation occurs when condition (c) is
violated and the bifurcation points depends now on the ratio of
the viscous to surface tension terms. It reduces either to the pre-
vious Hopf condition (C, = 0) when ¢;/¢, — « or to condition (a)
when ¢, /¢, — 0. Substituting the relations for the C,(H), Eq. 20,
we find that Hopf bifurcation (n = n,) occurs at

_ (1 + )R

d w

3-s5s-mlo 47

3 s 2
( —5—5)[—2n1+12(n-—1) -s( +n+ 5)]

The nature of the steady state is shown in the (8, n) plane of
Figure 7 by denoting the sign of the three eigenvalues. Limit
cycles may exist in the range (3 + 5)/2 < n < ny and the order of
the various points is unaffected by changing T for downward
flow.

Analysis of the trajectories in the three-dimensionai space
(H, w, ¢} is more intricate than the two-dimensional version.
The structure of the analysis follows. We investigate the shape
of the g = 0 surface, Eq. 43, in the phase space to show that it
attracts the motion and ask: is the motion along it stable? It
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Figure 7. Stability map for general case.

turns out that it is unstable in certain sections. We find the sta-
ble and unstable manifold and construct the trajectory in space.
The steady state H =~ 1 may be the origin of the homoclinic
orbit. It has a stable one-dimensional (i.c., a line) manifold and
an unstable two-dimensional (surface) manifold along which
the motion spirals. These spirals yield the capillary wave and are
evident only with relatively small Re (¢, /¢, large). After it spi-
rals out, the trajectory travels in the vicinity of H, so that the
dimensionless value of the film thickness is still 2 good approxi-
mation for the substrate thickness.

The slopes of the trajectories can be found readily from Eq. 43
to be:

LI SR i
dH ¢H’w dw H%

(48)

Note that ¢, — O except for the lowest Reynolds numbers.
Therefore the slopes of the trajectories in both the ¢ — H and
¢ — w planes are steep everywhere in the phase space except
where g — 0 or when the first and second derivatives of the wave
profile, w and ¢, are large. Data show that these derivatives are
everywhere very small indeed. Therefore we now explore the
region around g = 0.
From: the definition for gin Eq. 43, wheng = 0

_f(H,w) “9)

«C(H)
For ¢, =~ 0 this implies that f = 0, a situation that was explored
carlier. This can be pictured as a cylindrical surface in the phase
space perpendicular to the w — H plane. Figure 8 shows f = 0
curves for a sequence of values of n as determined from Eq. 37.
The case for n = 1.69 appeared earlier in Figure 4a where it was
shown that the crossing of the abscissa m: rks the location of H,,
the substrate height. Note that when n - 3 the value of H,
becomes identical with the smooth film thickness, a condition in
agreement with the experiment.

Figure 9 pictures the cylindrical surface, g « 0, in the phase
space @, w, H for ¢, = 0. When ¢ iz small but not zero the surface
is tilted somewhat. All trajectories starting frcm any point in the
phase space not on g - O rapidly approach this plane since
3¢ /dH and d¢/dw are large. This is evident from Eq. 48 for the
condition ¢ — 0. Once the trajectory reaches the g = 0 surface it
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Figure 8. Family of f - O curves in w~H rlane.

can be described by the relations

Hi=w w=¢=fleCoH) (50)

This is identically the two-dimensi. aal model developed ear-
lier, but the question of stability at any position on the surface
must still be explored.

Suppose H, (1), w,(1), ¢,(1) is the solution to Eq. 43 along g ~
0 with perturbations from this motion H = H(l) — H,(J), w =
w(l) — wy(I) and ¢ = ¢(I) — 4,(I) described by

Hi=% Wa=9¢ ¢Hd =gyl +g5 +26 (51)
Assume that perturbations in H are small and grow slowly s~
that g, = 9g/3H can be averaged, and (gy), {g.), and {g,)
replace the original time-dependent gy, 2.. 2,. The motion is sta-
ble if the trivial solution of Eq. 51, H = é = W = Q is stable, that
is, if the eigenvalues are all negative. We do a stability analysis
similar to that leading to Eq. 46 to find the stabilitv condition

{gu) {(g){g.}
“?,gﬁ_"'&/?%’d (52)
¢

Figure 9. g ~ O surface in phase plane.
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tory oscillates around the line f = 0.

We now describe the motion in the vicinity of H = 1 withn ~
ny. The stable manifold is the portion of the curve f = 0, denoted
aa in Figure 10, that connects the Hy; and H = 1 solutions,
denoted ABC. Its trajectory flows toward the steady state. At
n = n; (Hopf point) there is a pa’r of imaginary eigenvalues and
one negative eigenvalue:

( + T)zc,(l)) =15 (54)

A== 2G(1), Agy - ii(

€ €

The oscillations develop or decay with a period of ~(e,,
G2 Since C,(1) ~ O(e,/e,) short periods of O(+Ve) are
expected when the surface tension is important, while when sur-
face tension effects are negligible the period is of O(ve). The
cigenvectors that correspond to these imaginary eigenvalues
were calculated to be ¢ = 8*(H — 1) and ¢ ~ +idw; they define
the unstable manifold. We note however that § — w as ¢, — 0 or
¢~ 0. Thus 8*(H — 1) is finite only for H = 1. The plane H = 1
is thus 2 goosl approximation for the unstable manifold. For n
somewhat sm-ler than n,, A, does not change significantly,
while A,; =~ ¥ 2 ié. The frequency is of order ¢ '/ or /2 as
before and ¥ is the amplitude growih rate, which is small for
high surface tension and iarge at the other extreme. For
extremely small values i (ny — n) a limit cycle exists and it lies
close to the H = | plane. Further increase in (n,, — n) will break
the cycle and the trajectory is detached from the plane and
moves fast toward the stable manifold (f =~ 0). The resulting
motion in Figure 10 shows a closed curve composed of a spiral-
ing motion on H ~ 1 followed by a loop that travels around H,.
In the time demain we find small capillary waves whose number

Table 1. Wave Characteristics of Free-Falling Film (T - 0)

n Substrate

hy  Qphy ¢

Re A wm cm/s cm/s Meas. Theory Meas. Theory

78 118 028 282 68 258 2.46 08 0.75
192 026 039 503 105 2.4 2.10 0.72 0.72
387 008 050 768 120 149 1.77 0.66 0.62
778 0025 063 1270 140 .10 1.70 - H 47

Table 2. Measured Conditinns Along Flooding Curve

L2 ¢ h,
Re  N/m? T -5 cm/s n cm
15 329 09778 44.1 353 t1.4 0017
25 328 0.9662 8.5 438 9.05 0.0215
43 332 0.9237 12.1 s¢.o 6.29 0.024
63 349 0.9041 94 58.2 531 0.026
78 3.25 0.8906 8.1 61.6 360 ¢.029
109 3.59 0.8722 6.8 56.0 3.20 0.030
189 3.80 0.8309 49 86.9 3.i4 0.037

298 398 0.7702 335 96.36 2.56 0.042

varies like ¢, /¢,, Figure 5. The trajectory disappears when it hits
H,, which is still a good approximation for substrate thickness.

This analysis of the general third-order equation showed
again that ny and M, arc good approximations for wave velocity
and substrate thicknesc, respectively, but that the wave shape
differs from that cf the second-order model.

Comparison with Experiments

Experimental data on wave structure on falling liqu'd films
with counterflow of gas were recently presented by Zabaras and
Dukler (1988). These data are used here to evaluate this
model.

Free-falling film

Equation 47 with 5 = 0 can be used to determine n,, the
dimensionless wave velocity at t%. Hopf bifurcation, and this
can be compared with the experimental values to test the conclu-
sion of the phase space study that this must be close to the veloc-
ity of the homoclinic orbit and thus to cxperimental data. Simi-
larly, Eq. 40 provides a value of H,, the minimum possibie film
thickness computed from the theory. This can be uses to com-
pute the substrate thickness, which can be compared with the
data. These comparisons with the data of Zabaras and Dukler
(1988) appear in Table 1; surprisingly good agreement is dis-
played considering the difficulty in experimental'v determining
the substrate thickness. It should be noted that the Reynoids

16 —r—r-rTvr Y Ty T
14+ E
\
\
12 \ 1
0
\
10 \ 4
Yheory Eq. 38 \ Theory Eq. 47
n el
8r \ 4
o
e \ 1
O Data e \\
41 o \\ 1
°
2 VI W S A A FRR I W N § A
3 5 10 50 100 300
Re

Figure 11. Theory-experiment comparison for wave ve-
locity atong flooding curve.
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',  Ly
Figure 10. Trajectory of limit cycle.

or

(7] Cz a Co dW

==L > |-~ == 53

« 2 3H (c,) (dH)/.o (53)
An analysis of this equation shows that the transition occurs at
H = 1. The section H < 1 is stable and is the stable manifold
near H = 1. The motion around A > 1 is unstable and the trajec-
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Figure 12. Theory-experiment comparison for substrate

thickness along flooding curve.
o Theory; ® Experiment

numbers in this work are defined as one-fourth those in the
Zabaras and Dukler paper.

At Reynolds number above about 300 turbulent flow is
thought to set in, the shape of the velocity profile changes, and
the wave velocity would be expected to decrease, as discussed
earlier.

Film with countershear

A severe test of the model is a comparison with data taken
under the condition of interfacial shear due to counterflow of
- 1s, Table 2 lists some original source data taken from the thesis
of Zabaras (1983) during experiments along the flooding curve.
Note that in accordance with theory the value of the dimension-
less interfacial shear, 7, is never less than — 1. However at low
liquid rates it approaches it closely. Figure 11 compares the
experimental vatues of n with ny calculated from the simple
form of the equation in the limit 8 — 0, Eq. 38, and from the
general analysis, Eq. 47. The comparison is mast encouraging,
especially considering the fact that when 77— -1, the com-
puted value of s = T/(1 + T) used in both of these equations is
extremely sensitive to small errors in 7.

Not quite so satisfactory a comparison is shown in Figure 12.
Here the dimensionless thickness calculated from Eq. 40 is com-
pared with the dimensionless substrate thickness. The experi-
mental values of s and n were used as input to these calculations.
The error bars on the result due to the sensitivity of s to errors in
T at the low flow rate is indicated. However it is still clear that
the theory is not quite accurate enough in this region. We sus-
pect this deviation is due to the assumption that the interfacial
shear stress is independent of position along the interface and
thus is the same over the substrate as it is over the wave itself.
Experiments suggest that this is not the case and we are now
exploring revised models which incorporate shear stress varia-
tion zlong the wave.
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Notation

C, - functions, Eq. 20
¢ -~ dimensional wave velocity
D - pipe diameter
Jo [y = parameter in 1, correlations, Eq. 58
/. g = functions, Egs. 30, 43
h, H - dimensional, dimensioniess film thickness
h,, hy = smocth film solution with, without shear
J = Jacobian matrix
{ = dimeneionless coordinate £/ L

186 February 1989 Vol. 35, No. 2

L - length scale A Ref(t + 1)
N = wave nuinber
n - dincasionless wave selocity ch,/
ny. 0, = nof the Hopfl and homaclinic saddle-toop brfurcations
P - pressure
Q. Q¢ = local and feed hiquid volumetric flow rate
Re « Reynolds ~umber, /v
s = modified shear parameter T/{} + T)
T - dimensionless interfacial shear, 31,/2 pg h,
t - time
U/ = linear gas velocity
u, ¢ = liquid velocity paratiel, perpendicular 1o wall
w - difdl
W = surface tension parameter, Eq. 18
W Wy = gas, liquid mass flow rate
x, y = coordinates in direction paraliel, perpendicular to wall

Greek letters

a ~ caponent in power law prohle, Eq. 21
8 - ratio of time scales, Eq. 47
v = kinematic viscosity
p = density
7, = shear at interface
a - surface tension
n — dimensionless coordinate, y/A
# = viscosity
8, ¢ ~ time, distance in a moving frame
€. € = dimensionless time scales in terms M, H,, defined fol-
lowing Eq. 43
¢ -~ d*H/dP
A - cigenvalues of Jacobian matt x

Subscripts

x, ¥, H, etc. ~ derivative with respect to denoted quantities
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Abstract-—Mass transfer {rom a solid boundary into a thin wavy film was studied {or a wide range of
laminar flow rates with a novel experimental technique. Speculations that large wzves control the transport
process through a convection mechanism are validated through an examination of the time variation of the
film thickness and solute conceatration. Statistical analyses of the data demonstrate that the occurrence of
large waves with higher local flow rates coincides with an increased mass transfer both locally and giobally.
Accordingly, the relative importance of small waves or ripples is shown to decrease rapidly with increasing

flow rate.

INTRODUCTION

As a liquid film flows down a solid surface, a wavy
interface develops. For flow rates of industrial inter-
est, the free snrface quickly becomes covered with a
complex array of waves whose amplitudes vary
greatly about the mean film thickness. This gravity-
driven behavior is observed even in the absence of
interfacial shear stresses induced by adjacent gas flow.
Figure 1 shows a sample time tracing of the interface
of a fully developed laminar film falling freely down a
vertical tube. Large waves, having amplitudes from 2
to 5 times the mean thickness, move over the thin
substrate at velocities up to several times the mean
and carry a large fraction of the total liquid flow. The
slope of these large waves seldom exceeds 5%, yet
numerical studies of the flow fields (Wasden and
Dukler, 1989) show that significant normal velocities
exist near the gas-liquid and wall interfaces.

Mass transfer in liquids is a slow process compared
to heat transfer, suggesting that mass transfer rates
respond more dramatically than heat transfer rates to
wave-induced fluctuations in the otherwise parallel
flow (cf. Seban and Faghri, 1978; Henstock and
Hanratty, 1979). Many analytical studies of transport
through flat or slightly rippled films exist, all treating
the interface as a regular or periodic surface. For
selected large waves, the convective fluxes due to
normal velocities near the interfaces dominate the
transport and partially explain why the previous ana-
lyses underpredicted the overall mass transfer rates
(Wasden and Dukler, 1990).

Previous experimental studies of mass transfer into
falling films have domonstrated that transfer rates in
wavy films are greater than when waves are sup-
pressed, without providing an insight into the mech-
anisms of enhancement. Gas absorption experiments
are typically conducted by contacting the entire film

tPresently with  Shell Development Company,
Westhollow Research Center, Houston, Texas.
$Author to whom correspondence should be addressed.

surface with an excess of solute and measuring the
bulk outlet concentration (Emmert and Pigford,
1954). This practice yields data averaged over all
waves on the surface and makes it impossible to
explore the effects of wave characteristics. An altern-
ative arrangement to study wave effects on mass
transfer is illustrated in Fig. 2. Solvent flows as a2 wavy
film over a contaminated wall section, which may be
located any distance below the solvent entrance.
Large waves evolve slowly on the fully developed
films; so if the film thickness and the average contam-
inant concentration are measured directly after the
film contacts this section, the effects of wave shape,
size, velocity, etc., on the mass transferred into the film
should be plain. According to the criterion of Aris
(1956), Taylor dispersion in this system is negligible.
This configuration is similar to the one studied by
Stirba and Hurt (1955) and offers several experimental
advantages for studying the effect of waves. First,
while the presence of waves causes interfacial transfer
rates for gas absorption to be 2-4 times greater than
those observed for smooth films (Henstock and
Hanratty, 1979), mass transfer from the wall appears
to occur 5-10 times faster than in smooth films (Stirba
and Hurt, 1955). Second, it is possible to maintain
precise control over the amount of contaminant
entering the solvent, whereas gas absorption opera-
tions are limited to providing contaminant in excess.
Third, the effects of wave amplitude and velocity may
easily be studied by varying the distance between the
film entry and the contaminated section.

Previous experimental studies of this type, which
used the dissolution of a solid solute surface by the
film (Stirba and Hut, 1955; Kramers and Kreyger,
1956; Oliver and Atherinos, 1968), measured mass
transfer rates cither by weighing the flow surfaces
before and after an experiment or by measuring the
bulk concentration of solute in the fluid leaving the
apparatus. Such procedures made it impractical to
explore the effects of wave characteristics. Simultan-
eous measurements of mass concentration and film
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09 The analysis of mass transfer from the wall 10 a
o8 liquid is rcpre;cmcd by a substantial body of literat-
- ure due to the interest in using electrochemical probes
g o7 with a redox reaction of measure wall shear stress in
. high Schmidt number fluids (sce the review by
g 06 Hanratty and Campbell, 1983). Under these condi-
‘é 05 tions, the concentration boundary layer near the wall
2 is exceedingly thin and the velucity profile is con-
Z o sidered linear. For quasi-steady conditions a closed-
03 \N form relation between mass transfer rate and wall
shear stress can be derived. However, this method is of
02 . v . little use when the resistance to mass transfer extends

0 400 800 1200 1600 2000 yprqy0h the film as in large waves.

Time, ms Experimental studies have examined the average

Fig. 1. Film thickness time trace, Re = 880.
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Fig. 2. Mass transfer from the solid boundary into a passing
wave.

structure have not been reported for transfer from the
wall into a film, but Stainthorp and Wild (1967)
measured the film thickness and the concentration
averaged over the film thickness in a thin-film
liquid-liquid extraction column. Measurements were
taken using two photocells located 38 mm apart in the
flow direction and an absorbance technique was used
to relate photocell readings to film thickness and
concentration.

effects of waves on transport and numerical ap-
proaches have explored transport processes in isol-
ated waves. Both avenues show the importance of
wave characteristics and suggest the need for detailed
simultaneous local measurements of film structure
and concentration. The work presented here includes
the description of a novel method to obtain these
measurements and an analysis of the laminar film flow
results.

EXPERIMENTAL APPARATUS, TECHNIQUE AND
PROCEDURE

Flow loop and measuring station

The flow loop is illustrated in Fig. 3. Solvent enters
the top of the vertical column through a stainless steel
porous sinter which distributes the inlet flow
smoothly and uniformly around the tube periphery.
Solute is pumped through the pores of a very smooth
plastic cylindrical insert located directly above the
measuring station. The column is constructed of a
number of precisely machined segments of Plexiglas
tubing with 50.8 + 0.2 mm ID. The flow development
distance is adjusted by varying the number of seg-
ments between the solvent feed and solute input sec-
tions. Solvent (an aqueous salt solution) and solute
(an aqueous salt and dye solution) were pumped into
the system using magnetically coupled gear pumps.
The pump drive units contain an internal feedback
circuit to maintain constant flow rates with minimal
fluid heating. Details of the solvent feed section,
pumps and flow loop construction are found else-
where (Wasden, 1989).

The solute feed section was designed to uniformly
distribute a very low flow rate of contaminant both
axially and circumferentially so that the section ap-
proximates a contaminated solid wall. This arrange-
ment was developed to avoid previously reported
difficulties in wetting a solid contaminant surface
(Stirba and Hurt, 1955; Kramers and Kreyger, 1956;
Oliver and Atherinos, 1968). As shown in Fig. 4, the
section is made of an extruded piece of porous poly-
ethylene whose surfaces are very smooth. Surface pore
sizes average 10 um and solute is constantly pumped
at very low rates from the annulus through the pores
into the solvent strcam. The porous plastic ID was
slightly larger than the Plexiglas tube ID, so the
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T - 508 mm —ee{T |
Contaminant __ !
Flow
Plastic shost
(flow barrier) \ 280 mm
56.0 mm
N
plastic — ™
-
1 | E—

Fig. 4. Contaminant feed section of flow {oop.

flanges connecting the 280 mm long porous section to
the column were smoothly tapered at a 2.9° angle.
Uniform wetting of the surface was achieved by
blocking a large portion of the back side of the porous
plastic. Fluid enters the solute section through the
uncovered portion of the outer surface. Once past this
barrier, hydrostatic and pump pressure equalize the
fluid distribution in the highly porous central region
and force it to the inner wall, where it uniformly
saturates the small pores. By adjusting the area closed
to flow on the outside of the porous section, fluid was

observed to be distributed cvenly both axially and
circumierentially over the lower 255 mm of the device.

The measuring station (Fig. 5) included provisions
for measuring the film thickness at two axial locations
and the average concentration at the upper film thick-
ness location. The device was constructed from a piece
of Plexiglas bored to 50.8 mm in which two sets of
parallel 76 um diameter Ni-Pt wires axially separated
by 25.0 mm were installed to measure the film thick-
ness. A set of collinear quartz rods with highly
polished ends was used to transmit a laser light beam
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Fig. 5. Wave structure and contaminant-measuring section.

through the contaminated film. The center of the
receiving rod was mounted flush with the wall, be-
tween and 1.7 mm below the top wires. The transmit-
ting rod penetrated the film on the opposite side of the
tube. One end of this rod was positioned so that it was
12.5 mm from the receiving rod end. In order to
minimize reflective losses from the liquid surface,
12.5 mm diameter parabolic mirror with a 12.5 mm
focal length was placed over the rod end. A pair of
100 um holes drilled above the central mounting hole
permitted the parallel conductance wires to pass
through. A set of “O” rings was placed on the outside
of the penetrating rod to keep liquid from migrating
from the film onto the rod end and obscuring the light
path.

Measurement techniques and instrumentation

Two experimental techniques were combined in
this study. A high-frequency circuit was used to relate
the conductance of the liquid between the paraliel
wires to the film thickness. The resolution of the
method is of the order of 15 um and the circuit had a
time lag of less than 100 us (Brown et al., 1978). The
average concentration was determined by measuring
the attenuation of a laser light beam passing through
the contaminated film while simultaneously meas-
uring the film thickness with the parallel-wire con-
ductance method. The relation between optical at-

tenuation and solute concentration invokes Beer's law
for monochromatic radiation (Knowles and Burgess,
1984). For a single contaminant,

A = eh(C) n

where A is the optical absorption of the contaminated
solution, ¢, the molar absorptivity of the contaminant
at the particular wavelength, h, the path length of the
radiation and {C), the average concentration of the
contaminant over the path length. The absorption can
be related to the incident and transmitted radiation

through
A=In(lo/I)=W({/TY) )

where I, is the intensity of the incident beam, I, the
attenuated intensity and T, the transmittance of the
medium for the wavelength of interest. An optically
dense dye solution was used as the contaminant. By
using a transparent aqueous salt solution as the
solvent, the attenuation of light indicates only the
amount of solute in the optical path.

A schematic of the optical measurement system is
shown in Fig. 6. The light source was a 5 mW He-Ne
laser (632.8 nm) concentrated into 2 0.8 mm diameter
beam and rated at less than 0.1% RMS noise. A 6"
diameter integrating sphere was used to capture light
leaving the quartz rod and provide a uniform lumi-
nous flux on the face of a photodetector mounted 90°

/-so.amuonwrm
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Fig. 6. Optical measurement system.
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Mass transfer from a wall into a wavy falling film

off-axis of the incoming beam. This arrangement in-
sured that the output of the photodetector was not
influenced by the alignment of the photodetector face
with respect to the quartz rod. The photodetector
current indicates the light transmitted and is ex-
pressed as

T,=exp(— A) =exp(—ch(CH) =
1—eh(Cy- - (3

for small values of absorption. The value of (C) was
determined once h was abtained from the parallel wire
probes. Dye concentrations were chosen so that the
transmittance was always greater than 95% and the
lincar approximation [eq. (3)] was accurate to within
0.1%. Analog data collected from the film thickness
probes and photodetector circuitry were digitized and
subsequently processed. All signals were digitized
at a frequency of 1 kHz per channel with a 12-bit
analog-digital converter installed in a micro-
computer.

Solvent and solute properties

The solvent was a 0.34 M aqueous solution of NaCl
with 0.04 gl~! dye. The dye used was toluidine blue
{Basic Blue 17) wiich has a peak in its absorption
spectra at 628 nm. The molar absorptivity of the dye
(s) at 630nm is quoted as S000 M~ 'cm ™! This
highly absorbing dye was chosen so that a very small
concentration could be detected. An aqueous solution
of 5 g1~ ! dye and 0.34 M NaCl was used as the solute.
The solute dye concentration was kept low to insure
that the physical properties of the solution were not
appreciably altered by its presence. At 22°C the
solvent had the following measured properties:
density, 1010 kg m ~3, absolute viscosity, 9.845 x 104
kgm~'s™! and surface tension coefficient, 74.2
x 1073 Nm~!. The diffusion coefficient for the con-
centrated organic dye diffusing into a slightly contam-
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inated solvent was estimated 1o be 2.8 x 10 ®m?s ™!
(Cussler, 1984). Over the course of the experiments no
deviations greater than 0.2°C were noted and fluid
properties were considered constant.

Calibration, verification of measurement techniques and
procedure

Errors in film thickness measurements were estim-
ated to be no more than 1%. The error in the concen-
tration averaged over the film thickness was shown to
be less than 2.5%. Environmental noise in the optical
signal was eliminated by covering the entire apparatus
in thick black plastic sheeting and losses in the optical
arrangement were accounted for in the calibration
procedure. The accuracy of the method can be con-
firmed by examining data obtained for the flow of
pure solvent with 2 uniform dye coacentration. The
optical signal is converted to the film thickness for a
known dye concentration using eq. (3). Figure 7
shows a typical film thickness trace obtained using the
conductance method at a Reynolds number of 75Q.
Optical measurements were made simultancously and
the relative deviation between conductance and op-
tical measurements are shown in the figure. The agree-
ment proves that the sensitivity of the optical tech-
nique is sufficient to resolve deviations in local dye
concentrations of the order of 1% of the solvent or
0.008% of the solute concentration. The agreement
also shows that the frequency responses of the instru-
ments are comparable and, thus, can measure small
waves.

Each experimental run was preceded by calibration
of the system, the procedures for which are described
elsewhere (Wasden, 1989). Solute flow rates of roughly
2% of the solvent flow rate were found to provide
adequate contaminant without disrupting the flow.
Data were collected for solvent flow rates correspond-
ing to Reynolds numbers between 100 and 1000. Each
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Fig. 7. Film thickness and deviations between optical- and conductance-based measurements, Re = 750.
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solvent-solute flow rate condition was sampled for
90 s, allowing 500-1000 large waves to pass the
measuring station.

DATA ANALYSIS AND DISCUSSION OF RESULTS

Time series of film thickness and the average dye
concentration were examined 1o test the speculation
that large waves dominate the transport dynamics.
Since dye concentration was measured 1.7 mm below
the film thickness, cross correlations of the film thick-
ness signals were computed and used 1o extract a time
delay for time-shifting the concentration signal to
approximate simultaneous measurements. The degree

of mixing was ferred from a solute distribution
coeflicient

‘ y = hit)
&) = .m_--.-J. Cly.0)dy. 4

Comnha Jy-o

The coefficient would be identical in shape to the film
thickness for a pecfectly mixed film. Conversely, if no
mixing occurs {as in a flat film), ¢{1) is constant.
Typical time-dependent measurements of the film
thickness and the solute distribution coefficient, ¢,
appear in Figs 8 and 9 for Reynolds numbers of 230,
where the large waves are only weakly developed, and
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Fig. 8. Film thickness and solute distribution coefficient for a film development length of 2.14 m, Re
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950, where they dominate the interface. Film thick-
nesses are normalized by /i, the film thickness com-
puted for a laminar film without waves. At low
Reynolds numbers the ratio of the wave peak to
substrate thickness is as much as four but at Re = 950
wave peak to substrate thickness ratios of the large
waves range from four to eight. At the higher flow rate
the waves are asymmetrical in shape. Wasden and
Dukler (1989) computed the flow field for such waves
and showed that for large asymmetric waves there
exist significant velocities normal to the wall at the
front and back of the wave. In addition, there is
present a region of fluid recirculation under the wave
when viewed in a coordinate system moving with the

wave. Thus, in the presence of farge waves the convee-
tion and circulation are expected to significantly en-
hance the mass transfer rate.

Al Re = 230, Fig. 8 illustrates the effect of the wave
motion even when the waves are not large. In general,
peaks in the values of ¢ appear near the front and
back of the wave. When the wave is asymmetric there
is a sharp decrease in ¢ below the peak of the wave,
indicative of a low concentration in the recirculation
region. By contrast, the large waves associated with
the higher flow rate in F*2. 9 all show large peaks in
the solute distribution coefficient in the front region of
the wave. The amount of mass captured by these large
waves {proportional to @) is 2-5 times larger than that
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for the smalil-wave system. These data seem to sup-
port the qualitative argument that the large waves
control the mass transfer process because of the large
secondary convections induced by these waves.

Standard techniques were used to compute the
probability distributions of h and ¢ (Bendat and
Piersol, 1971} and their spectra (Priestley, 1987).
Figures 10 and 11 compare the pdfs for high and
low Reynolds numbers. The large tail in the distribu-
tion of film thickness for Re = 805 reflects the pre-
sence of large waves. The shift in the probability
distribution of ¢ to the region of the larger waves
shows again that these waves of larger amplitude
control the mass transfer process.

Figures 12 and 13 show the auto spectra of hand ¢
and the coherence function between the two for the
two Reynolds numbers. The coherence function in the
frequency domain is the analog of the cross-correla-
tion function in the time domain. For these com-
putations the Bartleti-Priestley spectral window was
used with a frequency resolution 0.48 Hz. The sample
size was such that the standard random error of 12%
of the spectrum can be expected at any frequency.

At Re = 174 (Fig. 12), the spectrum of the film
thickness peaks at about 8 Hz; however, considerable
energy is displayed due to the smaller waves at higher
frequencies. The spectrum of F is quite flat, suggesting
contributions to transfer from the full range of wave
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Mass transfer from a wall into a wavy falling film 4331

frequencies. However, Fig. 13 shows that at Re = 805
the dominant frequencies for both the wave motion
and the mass transfer overiap in the range of the large-
wave frequencies with a much smaller amount of
spectral encrgy in the region associated with the small
waves. Again, this suggests that at higher flow rates
the large waves dominate the process of mass transfer.

SUMMARY AND CONCLUSIONS

Falling liquid films are covered with a random
array of small and large waves interacting in a com-
plex fashion. The experimental technique developed
for this study measured the instantaneous local solute
concentration averaged over the thickness of the
liquid film, simultaneously with a measurement of the
local film thickness. Data were collected over a range
of Reynolds numbers and development fengths. An
analysis of these data revealed that the large waves
control the rate of transfer to the film. This result is
consistent with recent theoretical studies, which
indicate convective circulation paths which exist
under the large waves.

Acknowledgements—Financial support of this research by
the Office of Naval Research is gratefully acknowledged.
One of the authors (FKW) was supported by a National
Science Foundation Graduate Fellowship.

NOTATION

A optical absorption of contaminated solution

C locat contaminant concentration, kg m ™3

<y contaminant concentration averaged from
the wall to the interface, kgm ™3

D molecular diffusion coefficient, m?s~!

g acceleration due to gravity, ms ™2

h local film thickness, mm

hy Nusselt film thickness (= 3/4 Re v/g)'"?

I intensity of radiation, W m~2

Pe Peclet number (= Re S¢)

Q liquid-film flow rate per unit perimeter,
mis~!

Re film Reynolds number (= 4Q/v)

Sc Schmidt number (= v/D)

T, transmittance of solution at a wavelength 4

u local streamwise velocity, m~!

v local velocity normal to the boundary, m ~!

v, wave velocity, ms™!

x axial coordinate in lab frame, m

y coordinate normal to the boundary, m

Greek letters
P molar absorptivity of contaminant, m* kg™~ '
m liquid absolute viscosity, kgm™!s~?!

liquid kinematic viscosity, m?s™"
liquid desnsity, kgm™?
wall shear stress, N m
solute distribution coefficient as defined in

eq. (4)
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Abstract—From experimental measurements of a free falling liquid film at Re = 880, four representative
large, evolving or interacting waves were selected for computational domains in which the Navier-Stokes
equations were numerically solved. The algorithm computed velocity and pressure fields within each wave,
as well as the shape necessary to match experimental wall shear stress data. Results show interaction effects
significantly modify flow fields, compared to large solitary waves. Waves having two peaks had two closed
recirculation regions, with a mixing layer separating them. The size of the recirculation regions was
dependent on the extent of separation of the wave peaks. As with solitary waves, strong streamwise
accelerations exist, with both location and magnitude varying with shape and evolutionary character of
the wave. Heat and mass transfer rates must be enhanced by these flow properties, which ase shown to
have a complicated dependence on wave structure, Examination of the flow fields suggests parabolic
streamwise velocity profiles are generally deficient, explaining shortcomings experienced by hydrodynamic
models based on such simple velocity profiles.

Key Words: falling liquid films, numerical methods

INTRODUCTION

Investigations of hydrodynamic and transport properties of thin falling liquid films remain a
fertile research area today. Thin liquid films are encountered in a wide varicty of industrial
process equipment, including wetted wall absorbers, falling film chemical reactors, condensers and
vertical tube evaporators. At flowrates of industrial interest, falling films (even in the absence of
gas flow) evolve to a highly irregular wavy interface which is generally considered quasi-stationary.
Figure 1 displays a short time trace of such a falling film, 10,000 mean film thicknesses below the
inlet. The film surface is covered by a complex array of large and small waves moving over a
substrate which is less than the mean film thickness. The large waves, ranging in amplitude from
2 to 5 times the substrate thickness, carry a large fraction of the total mass flowing, and are
speculated to control the rates of scalar transport (Dukler 1977). Before the heat or mass transfer
rates to such films can be modeled it is necessary to understand the velocity distributions which
exist within these waves, as well as the evolution of the interface. The present work focuses on these
questions.

Previous modeling efforts generally were limited to either single, non-interacting (solitary) waves
of various thicknesses, or the intersection of small waves. While large, solitary waves and small
ripples on the substrate symbolize asymptotic behavior of the flow, examination of film thickness
measurements, as in figure 1, shows these limiting cases are not representative of the flow.
Numerical simulation of the isolated, large waves at the flow conditions of figure | (Wasden &
Dukler 1989) suggests transport through the film is enhanced by the interaction of large wave peaks
with the relatively slowly moving substrate. This same study determined that the seemingly siow
evolution of these waves is responsible for significant deviations in the flow field from those
determined for solitary waves. The more complicated case of rapidly evolving or interacting waves
integrates large wave interactions with the surrounding substrate and the potentially more
important effects of wave interactions.

Evolution of the large waves far from the inlet may be regarded as processes of coalescence or
splitting, and result from some type of flow instability. Large waves do not grow without limit,
but split into daughter waves when sufficiently perturbed. Many large waves overrun smaller,
slower moving waves, sometimes incorporating the smaller wave, while often passing over them
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without significant mass addition. The wide array of large wave behavior illustrates the need for
local measurements to determine relative effects of wave evolution and large wave induced
convection on transport enhancement.

Reliable experimental measurements of the velocity distribution in the films is exceedingly
difficult due to the extremely small film thickness (= 1 mm), very short passage time of each wave
(=60 ms) and the random location of the interface, as shown in figure {. Non-intrusive methods,
such as LDA, do not provide sufficiently fine resolution to investigate velocity profiles. Thus,
experimental measurements of hydrodynamic variables appear limited to the time variation of wall
shear stress and film thickness. Correspondingly, analytical models have been developed in the
absence of hard data on the true flow conditions which appear to exist in the waves.

Most analytical models of both single and interacting waves extend the concepts advanced by
Kapitza (1964), based on the use of a parabolic velocity profile and assuming that the streamwise
hydrodynamic variables scale with the wavelength. In 1972, in examining various models developed
to that date, Dukler concluded that all failed to accurately represent any measured characteristics
of the wave except at Reynolds numbers well below those of industrial interest.

Modeling the wavy fitm flow by a direct solution of the Navier-Stokes equations is hampered
by numerical stiffness imposed by the stress-free interface; as a result, convergence is difficult except
at the lowest flowrates, Previous numerical modeling has focused solely on non-interacting large
waves. Bach & Villadsen (1984) explored the application of a finite element scheme to the unsteady
problem of solitary waves developing from initial perturbations on the smooth film for Reynolds
numbers up to 100. The film Reynolds number is defined as Re =4 Q/v, where Q is the mass
flowrate per unit perimeter and v is the kinematic fluid viscosity. Their work predicted that the flow
far from the inlet would consist of solitary waves having one general shape, a condition contrary
to experimental fact even at film Reynolds numbers as low as 1. Kheshgi & Scriven (1987) applied
a finite element technique to a problem with periodic boundary conditions in the flow direction,
and verified the evolution of infinitesimal disturbances as predicted by Orr-Sommerfeld analyses.
Their work was limited to low flowrates, and failed to generate waveforms comparabie to those
observed experimentally for fully-developed flow.

Recent simulations of solitary waves at a high Reynolds number (880) proceeded by solving the
Navier-Stokes equations in a partially determined flow domain (Wasden & Dukler 1989). This
work showed that isolated wave velocity is strongly dependent on wave shape, and provided
evidence that numerous streamwise length scales existed in the flow. Further, it was determined
that effects of wave evolution are important near the solid boundary, shifting the maximum wall
shear stress in front of the film thickness peak. The use of a parabolic streamwise velocity profile
to describe the flow in large waves was shown to be inappropriate over a large portion of these
waves, suggesting analytical models based on such velocity profiles are fundamentally inadequate.

At present, no suitable models for evolving waves exist. In the absence of such models, and
experimental methods for measuring velocity profiles in thin wavy films, a series of numerical
experiments was performed. The experiments propose to illuminate the subject of transport

0 400 800 1200 1600 2000
Time, ms

Figure 1. Film thickness time trace: Re = 880.
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Figure 2. Measuring station.

enhancement due to waves by solving for the hydrodynamics within typical experimentally
determined waveforms. For a film Reynolds number of 880. wave shapes and wall shear stress data
were measured in our laboratory. Four representative large, interacting o: svolving waveforms were
converted for use as domains for a finite-difference code: developed specifically for free surface
problems. The use of experimen:ally measured waveforms :s a novel concept, providing a somewhat
simpler numerical task while insuring the results will nct represent isolated or idealized cases of
film flow. The results of these computations demonstrate the transport enhancement properties
peculiar to evolving large waves, and present data useful for future model development.

EXPERIMENTAL PROCEDURE
Flow loop

For fully-developed wavy film flow, film thickness and wail shear stress data were collected in
a 50.8 mm i.d. vertical test section in a flow loop described by Zabaras et al. (1986). After being
pumped through a calibrated rotameter, the fluid entered the column through an annulus whose
inner wall consists of a stainless steel porous sinter, having 100 um pore size. Combined with careful
leveling of the column prior to data collection, this entry section ensured minimal deviations from
axisymmetric flow, and produced a smooth inlet flow. The measuring station was located 3.1 m
(roughly 10,000 mean film thicknesses) below this entry section.

Measuring station and measurement technigues
The measuring station, shown in figure 2, is patterned afier that described by Zabaras er al.

* (1986). The removable section allows simultaneous measurement of film thickness and wall shear

‘tress at one location, as well as film thickness at another. The station was constructed of thie same
erial as the flow loop, and was carefully machined to ensure a smooth transition to the station.
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Film thickness probes consisted of twin paraliel platinum-13% rhodium wires, 0.05 mm dia
spaced 2.5 mm apa.., which penetrated the flow. Descrhid in detail by Brown es al. (1978), a linear
relation exists between the resistance of the film between the wires and the film thickness.
Calibration proceeded by setting the measuring station horizontal, blocking the ends and
introducing different fluid levels, determined to within 10 yum using a cathetometer, followed by
measurement of the resulting resistance. Downstream electronics for convert'ng this resistance to
a d.c. voltage signal are described elsewhere (Zabaras et al. 1986). Conductance of the fluid was
monitored closely at all times during the calibration and data collection procedures to insure proper
correction of any thermally induced conductance drift.

Wall shear stress measurements were based on the electrochemical mar. transfer method
described by Hanratty & Campbell (1983). For the present series of measurements, the
iodine/tri-iodide system was chosen. The working solution contained 0.1 M KI and 0.004 M I,(s)
in demineralized water, and was replaced every 2 h to minimize errors due to iodine evaporation.
A dry nitrogen atmosphere was used in the flow loop to minimize oxygen saturation of the
solution. Fluid properties at 25 °C are: density, 1010 kg/m?®; absolute viscosity, 8.5 x 10-*kg/ms;
and surface tension, 7.12 x 10~ N/m. The cathode for this system consists of a flush-mounted
strip of platinum foil, 0.07Smm (in the flow direction) x I mm wide, embedded in Plexiglas
to insure electrical isolation. By measuring the current produced by an electrochemical reaction at
the surface of the cathode, the wall shear stress at that location is determined. For the redox
reaction

I7 + 2e — 31~ (cathode),
31" — I + 2e (anode),

a concentration boundary layer devetops on the cathode surface, which is polarized at —0.8 VDC
to insure the concentration approaches zero. For the iodine system, the range of polarization
voltage is quite broad, insuring large increases in flowrate will not deplete the electron source at
the cathode. Details concerning the downstream electronics and calibration associated with this
measurement technique are to be found elsewhere (Zabaras et al. 1986).

It is now recognized (Mao & Hanratty 1985) that the response of the - lectrochemical probe is
highly dependent of the nature of the “input” wall shear stress. For the ionic system employed in
this study, errors in both phase and magnitude are expected to be small due to the large (10°s™")
mean velocity gradient, small cathede surface area and large Schmidt number (v/D) of the fluid
(=~ 780). The relationship given by Hanratty & Campbell (1983 between cathode current and wall
shear stress was used in this study, as the frequencies in the datz were sufficiently low to allow the
use of a quasi-steady analysis.

Data collection, processing and analysis

Voltage signals from two film thickness probes and the wall shear stress probe were first
low-pass filtered at 1 kHz, then fed to a microcomputer-based A/D converter. Each signal was
digitized at 1 kHz by a data translation 12-bit A/D converter installed in a DEC Micro 11/73
microcomputer. The data set comprised 1 min of data, and was stored on the system Winchester
disc prior to applying calibration curves and writing the data to magnetic tape for further analysis.
Digitization and collection errors are expected to be negligible for all d.. ., while calibration errors
for the film thickness measurement are expected to be <3%. Errors innerent in applying
steady-state wall shear stress calibration curves depend on the nature of the input signal, requiring
separate examination of individual results. Zabaras (1985) reports estimated errors of <7% for
this technique.

Film thickness and wall shear stress data was examined to locate typical interacting or evolving
waveforms. Due to the limited amount of data provided by the two film thickness probes,
determinin the evolutionary character of waveforms was difficult. However, several types of wave
shapes appeared frequently, alithough their individual dimensions varied considerably. Four
waveforms were chosen as representative of the large wave structures, each having peak thicknesses
greater than twice the surrounding substrate thickness. In addition, each was preceded by a
reasondsbly smooth substrate, shown by wall shear stress measurements to be free of acceleration.
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Each measured film thickness profile was converted from the time domain into a spatial domain
for use with the numerical algorithm. Wave peak passage times between probes were used to
estimate “wave velocities”—these values provided initial estimales for the numerical computations.

NUMERICAL METHOD

|

Solution of free boundary problems requires methods for both hydrodynamic calculations and i
shape determination. The velocity and pressure fields within the wave were determined by solving i
the Navier-Stokes equations in primitive variable form. For a film Reynolds number of 880, the
wave thickness generally was < 1% of the pipe radius and therefore, a two-dimensional cartesian ?
coordinate system was chosen. The transformation of time traces of film thickness to this |
coordinate system comprised the shape determination portion of the overall algorithm. The ,
common method of computing the free surface position is to compute film thickness values at fixed 4
streamwise locations. The present work inverts this procedure; for a measured sequence of film ‘
thickness values, streamwise locations associated with each value arc determined such that the
resulting shape and flow field within satisfies all interfacial boundary conditions.

To develop the methodology for treating evolving films, waves were initially modeled as though
their shape remained constant with time—these waves are termed solitary. A new streamwise
coordinate, z, is fixed on the front of the wave and extends in the opposite direction of gravity.
The film thickness profile in the time domain, h(t,), was converted to the length domain, A(z,),
through the transformation

z; =20+ V, (4 — 1y), n

for i ranging from 1 to the number of film thickness points in the isolated wave. Through this }
transformation, the wave profile was “stretched™ for use as a computational domain, and time was i

removed from the problem. In this coordinate system, the wave remains fixed, and the wall moves
upward at a constant speed given by V,,, the wave velocity for the solitary wave.
It is useful to define a new streamwise velocity component,
u(zy)= —u'xy, 1)+ V., 2] 1
where u’(x, y, t) is the streamwise velocity in a coordinate system fixed on the wall. The governing SR
equations for this viscous, incompressible and isothermal flow relative to the moving wave become
u6u+v6u_ 1 6P + 62u+6zu 6]
oz dy  padz E§r¥\az ay?)’
u3u+v¢_32_ 1P v azv+62v [
dz dy  poy dzr " dy?
PTe t
'zall:s and B
173 du v
1ch!gr S 5 =0, {51 ;
.najikis.
n effors where v is the velocity in the normal (y) direction, P is the pressure, g represents gravitational X
ipplying acceleration and v and p are the kinematic viscosity and density of the fluid, respectively. At the i
aq*.g stress-free interface, y = h(z), tangential and normal stress balances require
7% or
ou 0 2 du @
)] -5
-volaing dy 0z \dz dz\0z dy
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where ¢ is the surface tension coefficient and g is the absolute viscosity. At the wall, y =0,
u=V,, =0, (8

represent the standard no-slip and no-Aux conditions.
Velocities at the interface are related through the kinematic condition in a moving frame,

v=u- {9]
The inlet velocity profile is parabolic, representing an acceleration-free falling film, while a sufficient
and physically consistent outlet condition for a solitary wave requires a zero streamwise derivative
for all variables. The variable V,, replaces h(z) as the final variable to be iteratively determined
in the free surface problem.

For each wave profile, a unique, non-uniform finite difference grid mesh was constructed. The
mesh for a typical domain is shown in figurc 3. The particular wave shape determined the grid
spacing used. Mesh refinement continued until no further change in either the computed wave
velocity or wall shear stress profile was observed. Of particular importance was the concentration
of cells near the front of the wave, since the velocity fields change drastically in this region due
to the large interfacial slope. In addition, large curvatures exist at each peak and trough. To insure
adequate resolution of capillary pressure induced effects, grids were concentrated near the free
interface in these regions. For most waves, 1800 cells of dimension éx 8y were sufficient, and
produced grid Reynolds numbers {Reg, = u(z, y) éx/v, Reg, = v(z, y) 6y/v]) of order 1 in the y
direction, and ranging from [ to 100 in the streamwise direction.

The curved interface was accomodated by allowing bounda: - cells to be cut by the boundary,
h(z), thus reducing their volume. This situation is illustrated in figure 4. This technique produced
areas adjoining two boundary cells, the centers of which were outside the computational domain.
As the stress-free interface requires a zero normal derivative of the velocity vector with respect to
the boundary, h(z), these regions were treated as inviscid channels through which all luid leaving
one boundary cell on its shared side passed into the neighboring cell through its respective shared
side. The total area of these regions represents <0.1% of the total domain, and had little effect
on the results.

The equation set was solved on a finite difference grid using a variant of the TEACH-T code
(Gosman et al. 1969), incorporating the SIMPLER pressure/continuity solution procedure; the
principles of this method are described in detail elsewhere (Patankar 1980). The domain includes
regions of significant streamwise variation in all variables, thus necessitating an accurate method
of discretizing convective momentum terms. The simplest method of convective discretization,
upwind differencing, ensures a reasonably stable numerical solution, but introduces numerical
diffusion in regions of the flow where streamlines are oblique with respect to the grid lines
(Raithby 1976). More importantly, the upwind scheme lacks sensitivity to cross-stream diffusion
and source terms (Leonard 1979), which are of tremendous importance in the case of a thin film.
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Figure 3. Sample finite difference grid. Figure 4. Interface finite difference grid.
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This lack of sensitivity diminishes the effects of the y direction diffusion as well as the ™ velocity
in the solution of the streamwise velocity. These deficiencies in the upwind and hybrid methods
require the use of a QUICK-based scheme, which improves acccuracy by expanding the
number of neighboring points included in interpolated values of velocity. Based on Leonard’s
(1979) third-order accurate discretization scheme QUICK, Pollard & Siu (1982) developed the
QUICK-ER (Extended and Revised) method of discretizing convective terms. The QUICK-ER
method overcomes stability problems inherent in the QUICK procedure at the expense of
slower convergence, and is considered the most satisfactory method of handling convective
momentum terms (Huang er al. 1985). For application to non-uniform grids, a new version of
QUICK-ER was developed. This method follows the spirit of the QUICK-ER formulation, but
includes locally variable weighting factors to account for the non-uniformity of the grid in both
directions. Although QUICK-ER schemes requires more computational effort per iteration than
upwinding, particularly for non-uniform grids, improvements in accuracy allow the use of a
slightly coarser grid, so total computational time exceeds that required by the upwind method by
only 20%.

The solution procedure began with choosing a value for ¥, and creating the transformed
domain, given by [1]. The « velocity field was set to a parabolic profile everywhere, and the v
velocity field was set to zero. The pressure at each z Jocation was set to the surface pressure due
to curvature. Updated velocity and pressure fields within the wave were then computed using
(315} Through interpolation for the velocity gradients in the interfacial shear stress balance, (6],
streamwise and normal velocities in the interior of the flow field were used to derive an expres-
sion for the streamwise surface velocity. Coupled with the kinematic condition [9], the velocities
on the surface wete known for each iteration. The surface pressure computed from [7] was used
to determine the first pressure value in the interior of the domain through the use of parabolic
interpolation using the surface pressure and two interior pressures. With the newly computed
surface variabies, the velocity and pressure fields were updated until the sum of residuals
of mass and momentum (normalized by the inlet quantities) over the domain was <107
In addition, the interfacial shear and normal stress balances were required to be within 1077 Pa ;
of zero. :

The free boundary shape was determined by examining the converged average outlet pressure ’
in the flat film section. If the average pressure did not approach zero, as required for a
non-accelerating film trailing a solitary wave, a new value of ¥, was chosen and the process
repeated. The adjustment procedure for V,, was simple—if the pressure in the outlet section was
higher than zero, the wave (wall) velocity was too high, since the wall was pushing excess fluid
through the wave, and a positive pressure at the outlet was opposing this extra fluid in an attempt
to satisfy the mass balance for the wave.

The numerical study of evolving or interacting waves retains much of the methodology developed
for solitary waves, differing only in the wave shape determination. Examination of the experimental e
measurements of film thickness reveals the large waves change rapidly between the upper and lower :
film thickness probe. The waves appear to change from solitary type waves by being perturbed by
locally variable mass and momentum sources, physically recognized as small waves. Incorporating
this unsteady effect is accomplished through the use of a locally constant stretching parameter, as j
opposed to the globally constant value used for the classical solitary wave. The domain i
transformation for this case is given by i

gyt

=20+ Vo (1, ~ ), (10} \
where z is the streamwise coordinate fixed on the wave front. In generai, this pseudo wave
velocity is

Vo=Vl +e(z)), 1

where e(z,) is an iteratively determined local stretching variable and V,, represents the wave velocity
associated with the substrate. The solitary wave case is recovered by setting e(z;) = 0 ¥i. As before,
we define a new streamwise velocity component as

u(z, y) = —u'(x,y, 1) + V. (2)). (2]




364 F. K. WASDEN and A. E. DUKLER

This transformation introduces locally variable mass and momentum sources into the ¥ momentum
and countinuity equations [3] aand {5}, which become

u ?—'1+9—'f‘—' +v€3—-1§£— +v @+62“ . 13
3z ' dz - Tpaz TN TEH T A (13
and
du ov dV,
F + 5; T 0. [14]
The interfacial stress conditions [6] and [7] are modified slightly by the unsteady effects, and become
ou ov dh\? dh fou ov dV,
G- ] 2G-5-5)- el
and
d*h

P=gqg- -&? + 2“ ?3_95 diz._ .a_g+gg i‘£+‘a£ []6}
= l+g{,_2:/z l+gh—2 0z dz Jdz dy adyjfdz ay/ )
dz dz

The normal stress balance, [16], was found to be insensitive to the additional term, dV, /dz, and
the term was removed from the formulation. The solution procedure for the pseudo-unsteady
equations [13], [4] and {14}, subject to [15] and [7]-]9), is identical to that of the solitary wave. with
the exception that now a profile of ¥, , must be specified instead of a single value. When the velocity
and pressure fields have converged for a given set of V,,, the wave shape is adjusted through e(z,)
to meet two criteria. The baseline wave velocity, V., is adjusted such that the average pressure in
the flat outlet section approaches zero, as before. The computed wall shear stress profile is then
compared to the experimental profile, and adjustments made to e(z;) to correct deviations. Upon
arriving at the correct distribution of e(z,), the solution includes the velocity and pressure fields
within the wave, as well as the relative extents of its evolution throughout the wave. Each solution
is unique, and the wall shear stress matching procedure insures the accuracy of the velocity fields.

The procedure developed for the solitary waves required an average of 300 iterations of the
velocity and pressure fields to converge, with an under-relaxation factor of one-half used for all
variables. Between 4 and 8 adjustments to the solitary wave velocity were required to produce a
flow with an average outlet pressure <10-? Pa. For the quasi-unsteady case, roughly 500 iterations
were required to achieve convergence of the velocity and pressure fields, due to the extra stiffness
imposed by the multiple peaks and valleys. Adjustment of the variable wave velocity to match the
wall shear stress data took anywhere from 20 to 40 iterations.

The program was coded in FORTRAN 77, and required 2 mbyte of task space. Execution times
for convergence of the velocity and pressure fields for a given wave shape were approx. SCPUh
on a VAX 11-750.

RESULTS

This study concentrated on waves developing from or interacting with isolated waves, identified
by comparing film thickness measurements from both upper and lower probes. Examination of the
experimental film thickness data shows that many large waves fall into three categories. While
nearly solitary waves exist, few are free from small wave induced ripples, an example of which is
shown in figure 5. As the wave travels from the upper to the lower probe, the small hump on the
wave tail grows, while the wave front retains its structure; we classify this wave as type A. Large
waves appear susceptible to splitting when perturbed, as illustrated in figure 6. These waves,
classified as type B, cover a large portion of the interface, and suggest that modeling falling films
far from the inlet as steady processes neglects important dynamics. The interaction of two large
waves of unequal size is shown in the wave trace in figure 7. Although significantly smaller, the
trailing wave seen in the upper trace either passes through the larger wave or accumulates a larger
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Figure 5. Evolution of a nearly solitary wave: type A. Figure 6. Evolution of a large wave via splitting: type B.

portion of its mass, leading to a situation classified as type C. While each of these cases characterizes
a significant fraction of the interface, combinations of these effects are also seen. Figure 8 illustrates
the splitting of a large wave coupled with the interaction of the large wave with a small wave
preceding it. This type D wave is not representative of all complicated waves, but serves as an
example of the combination of evolution and interaction effects.

Description of large waves is generally limited to peak and substrate thicknesses and wave-
lengths. Experimental data is limited to two time traces of film thickness, which makes quantitative
evaluation of these variables difficult. It must suffice to characterize the extent of evolution by the
time separation of individual peaks, while the relative mass of each peak is estimated on the basis
of the peak thickness. In conjunction with the numerical predictions of flow fields, these data offer
new insight into the hydrodynamic processes occurring in the large waves.

Streamlines computed for the type A wave are shown in figure 9. The prcscnoe of a large
recirculation region is seen within the peak of the wave when viewed in a coordinate system fixed
on the wave. The interaction of this large mass of fluid with the surrounding substrate results in
regions of strong streamwise acceleration ahead and behind the region. These results were also seen
in studies of nearly solitary waves with similar peak/substrate thickness ratios (Wasden & Dukler
1989). The presence of the growing hump on the wave tail increases the size of the recirculation
region, compared to a solitary wave, which causes larger disruptions in the substrate as the wave
peak passes over. The wall shear stress profile for this wave is shown in figure 10, along with
experimental values. Agreement is excellent over most of the wave—the experimental values at the
tail suggest outside or cross-stream disturbances are present. This discrepancy is not expected to
significantly alter the overall flow field, as the region under the peak is insensitive to downstream
disturbances at Re = 880. Matching the wall shear stress data required stretching the wave shape
in transforming it from the time domain to the spatial domain, as shown in figure 11. The
transformation required that the entire wave stretch in length, compared to a purely solitary
wave; the magnitude of e(z;), [11], is shown in figure 11. Of special interest is the extra
stretching caused by the presence of the hump on the tail—previous studies of nearly solitary
waves (Wasden & Dukler 1989) show the evolution is confined to the region very near the
peak, while in this case, the tail region is stretching as well. From a substrate wave velocity of
L.10m/s, the wave velocity V, ,, [11], increased to 1.89 m/s near the peak. The average, or
Nusselt, film velocity for this Re (Kapitza 1964) is 0.51 m/s, showing the wave moves at between
2.1 and 3.7 times the average velocity. The combination of experimental observations and
numerical simulations show that the wave is in the early stages of splitting, and that this effect,
although seemingly slight upon examining the film thickness measurements, significantly affects
the flow field.

Flow within a wave with the peak splitting into daughter waves is shown in figure 12. The flow
beneath each peak resembles that seen in the nearly solitary wave A, The recirculating region
encloses the entire area under the twin peaks, and again causes large accelerations near the front
and rear of the wave. The remnants of the original solitary wave recirculation region are seen at
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Figure 7. Interaction of large waves: type C. Figure 8. Evolution and interaction of large waves: type D.

the front of the wave, with the newly formed rear peak having a smaller recirculation region, even
though it has a roughly equivalent peak thickness. This observation demonstrates the danger of
classifying multiple waves based solely on the easily measured parameters such as peak thick-
nesses and separation time. Comparison of computed and measured wall shear stress is shown in
figure 13 to be excellent. The peak in wall shear stress preceding the first peak in film thickness
is similar to that observed in an isolated wave, showing how the evolving wave retains part of its
original traits. The second shear stress peak is a further indication of the emergence of a new peak.
The domain and stretching parameter variation for this wave are shown in figure 14. The stretching
parameter was varied such that the peaks were evolving most rapidly, with the trough moving
slower than either peak. As expected, the second peak was moving slightly (~10%) slower than
the first. The substrate wave velocity was 1.32 m/s, yielding V, ; from 1.32 to 1.91 m/s under the
peaks. Compared to the Nusselt velocity, the wave moves roughly 2.6-3.8 times faster.

Flow in an interacting wave sequence is shown in figure 15. The two waves appear to have
independent recirculation regions, with the first preceded by the characteristic acceleration region.
The size of the recirculation zones appears to be related to the thicknesses of the individual peaks,
in contrast to the evolving case, type B. This may result from the extra separation that exists in
this case, causing speculation that the type B wave would evolve into a wave similar to type C.
Shear stress profiles for the interacting case are displayed in figure 16. The agreement between
computed and measured shear stress is excellent, and shows two peaks in shear stress, indicating
the wave is evolving into two nearly solitary waves. As the wave peaks separate further, the second
wall shear stress peak is closer in magnitude to that expected of an isolated wave, additional
evidence of future disintegration of the original wave. The transformed domain and stretching
parameter variation are shown in figure 17, Both peaks were evolving at a nearly identical rate,
suggesting the effect of the interactions on the natural evolution of the wave was slight. As was
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Figure 10. Shear stress comparison: wave A. Figure 1. Experimental and computed wave shape: wave A,

previously the case, the trough between the waves was stretching more slowly than the peak regions.
The substrate wave velocity was 1.12 m/s, closer to the solitary wave (A) than the splitting wave (B).
The wave velocity, ¥, ;, varied from 1.12 to 1.7m/s under the peaks, roughly 2.1-3.3 times the i
Nusselt velocity.

The most complicated waveform studied included the effects of evolution and interaction. Flow i
within this wave, classified as type D, is shown in figure 18. Apparently the interaction of the large :
wave structure with the small wave near the front has little effect on the overall flow pattern,
compared to what occurs in simple evolving waves of this size (se¢ figure 12). A region of moderate
acceleration exists at the front of the small forerunner wave, followed by a region of nearly paraliel
flow. This flow profile suggests the effect of the initial interaction is limited to accelerating fluid
away from the wall, and effectively changing the substrate thickness with which the large wave
interacts. Further downstream, the large acceleration region is again evident, due to the interaction
of the large recirculation region with the slowly moving substrate. As the wave has only begun to :
evolve, the recirculation region is reminiscent of that associated with a stretched isolated wave, -
although the area near the trough of the wave implies future separation of the waves. Shear stress
data for this wave is shown in figure 19; agreement between the measured and computed values
is excellent over the entire wave. The shear stress profile provides further evidence of the dampening
effect of the interaction of the large wave with the small forerunner wave. The maximum shear
stress preceding the large wave peak is smaller (relative to pgh) than existed in the previous cases.
This may be due to the relative difference in size between the wave peak and the local
substrate—previously, wave peak/substrate ratios were 3, while the ratio between the first peak
and the plateau preceding it, in this case, is <2. Since the splitting of the peaks has just begun, -
no significant secondary peak in shear stress exists. The transformed domain and stretching
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Figure 13. Shear stress comparison: wave B. Figure 14. Experimental and computed wave shape: wave B.

parameter variation are shown in figure 20, and are similar to cases B and C. Evolution of the
forerunner wave is significant; the wave is stretching out in response to the mass descending on
it. As before, the second peak is moving slightly slower than the first (&= 5%); from data shown
in case B, the difference is expected to increase with the extent of evolution. From a substrate wave
velocity of 1.24 m/s, the wave velocity V,, , increased to 1.89 m/s under the peak, ranging from
2.4 to 3.8 times the Nusselt velocity.

SUMMARY AND CONCLUSIONS

Interacting or evolving large waves comprise a large portion of the interface of a failing liquid
film. Wave amplitudes of 2-5 times the substrate thickness are common even for moderate
Reynolds numbers, ruling out models based on small perturbation theory. From film thickness
measurement time traces, four representative large waves were selected as comutational domains
for a numerical solution of the Navier-Stokes equations. Computed results included velocity and
pressure fields, as well as the wave shape necessary to match shear stress measurements. Values
of ¥, [11], remain near those expected for solitary waves with similar peak and substrate
thicknesses, as reported by Wasden & Dukler (1989). The stretching technique developed for
this study allowed simple accomodation of local unsteady effects by decoupling the hydrodynamic
and shape determination problems. An interesting extension of the present work would be to
measure the film thickness at several closely spaced locations, and attempt to compute e(z) from
the data.

The bulk of ¢L: lizuid i large interacting or evoling waves is carried in the region above the
substrate, and is nearly stationary in a coordinate system moving with the wave. As the wave moves
rapidly over the slow substrate, it causes acceleration of fluid from the front into the peak. The
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Figure 16. Shear stress comparison: wave C. Figure 17. Experimental and computed wave shape: wave C.

fluid then decelerates as it passes out of the wave tail, generating a closed recirculation region in
the wave peak. Waves with multiple peaks have multiple regions of recirculation, with mixing zones
between them. These regions occur only in multiple-peak waves, and may be responsible for heat
and mass transfer enhancement above that due to fluid acceleration and circulation. The magnitude
of the enhancement due solely to multiple wave interactions is unknown, but may be significant
compared to that associated with isolated large waves. The computations were limited to waves
having two peaks, but these results are expected to extrapolate well for cases of more than two

H
2
o
2
£
£
4
00 5.0 160 1;0 200 250
Distance, mm
Figure 18. Streamline map: wave D.
y S ] -
/ s . olz)

Wall Sheer Streas, pgh
("]

Film Thickness, mm or #(z)

Shear Stress, Computed {Pa)

0 50 100 150 ° 50 100 150 200
Tims, ms Time, ms or Z,Mm
Figure 19. Shear stress comparison: wave D, Figure 20. Experimental and computed wave shape: wave D.

LMF 13/3—F




Rty

370 F. K. WASDEN and A E. DUKLER

peaks. As a majority of the surface is covered by evolving or interacting waves, further efforts
toward determining relative effects of competing hydrodynamic processes is justified.

Perhaps the most surprising result of this study concerned the similarity between flow fields
resulting from the interaction of large waves and those generated by the splitting of a large wave
into two waves, This similarity suggests the shape of the interface controls the fluid dynamics
within, regardless of the evolutionary process from which the wave resulted. This may simplify
further analyses of transport processes, and allow characterization based primarily on peak and
substrate thicknesses, as well as separation times.

Modeling large wave interactions will require the use of velocity profiles capable of representing
the large streamwise accelerations existing in the flow. Previous work (Wasden & Dukler 1989) has
shown a cubic polynomial reasonably approximates the normal (y) variation of the streamwise
velocity at all axial locations: its use for modeling the evolution of large waves is recommended.
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